Menu

Вулканические аппараты и их строение

Извержения вулканических продуктов происходит из вулканических аппаратов – вулканов, строение которых сложно и разнообразно. Вулканы – это возвышающиеся над окружающей местностью сооружения, построенные из пород извергавшейся магмы.

5.1.1. Элементы вулканического аппарата

Главные структурные элементы вулкана – жерло, конус, кратер и кальдера.

[image]

Рис. 5.1. Разрезы щитового вулкана (а) и стратовулкана (б).

1 – лавы; 2 – паразитические центры извержения;

3 – экструзивный купол; 4 – слои пирокластического материала; 5 – жерло вулкана.

Жерло вулкана – вертикальный или почти вертикальный канал, соединяющий магматический очаг вулкана с поверхностью земли, где жерло заканчивается кратером (рис. 5.1). Логичнее называть жерлом вулкана только верхнюю часть подводящего канала. Форма жерл вулканов центрального типа близка к цилиндрической. От магмоподводящего канала в теле вулкана могут отходить второстепенные выводные каналы в стороны, давая начало боковым кратерам. Жерло вулкана может быть сложено туфами, лавой, кластолавой, а также частично или полностью кристаллическими магматическими породами. И это столбообразное тело называется некком.

[image]

Рис. 5.2. Вулканические конусы.

A – лавовый конус, B – пирокластический конус,

C – сложный конус,

D – экструзивный шипообразный конус (горнито).

1 – довулканические породы; 2 – лавы;

3 – пирокластические породы

Конус вулканический (рис.5.2) – вулканическая постройка, имеющая форму конуса со срезанной вершиной, сформированная вокруг жерла из вулканических пород. Крутизна склона конуса обусловлена соотношением эффузивных и эксплозивных пород и их составом. Выделяются пирокластические или эксплозивные лавовые конусы, экструзивные (иглы, обелиски и др.) купола и сложные или комбинированные конусы. Сложные конусы, называемые также стратовулканами, состоят из перемежающихся слоёв лавы и пирокластического материала (рис. 5.1б). На склонах главного конуса могут быть мелкие дополнительные или паразитические конуса.

[image]

Рис. 5.3. Типы строения моногенных вулканов.

а – моногенный лавовый вулкан; б – шлаковый конус; в – эксплозивная воронка (маар).

1 – жерло вулкана; 2 –конус; 3 – кратер.

Кратер вулканический (рис. 5.3) – впадина в виде чаши или воронки, образовавшаяся в результате активной, преимущественно эксплозивной деятельности вулкана. Кратер тесно связан с жерлом и вообще вулканическим каналом и генетически неотделим от них. Первичная форма кратера, в которой соединяются понятия вулкана и кратера называется мааром, т.е. это зарождающиеся вулканы, представленные кратером взрыва с пологим дном, которые не имеют ещё конуса, либо конус очень маленький Поперечник кратера редко превышает 2-2.5 км, а глубина – от нескольких десятков до нескольких сотен метров. На дне кратера, засыпанном пирокластическим материалом, могут находиться бокки (отверстия на дне кратера, откуда происходят слабые извержения), фумаролы (выходы из трещин горячего вулканического газа и пара в виде струй или спокойно парящих масс), сольфатары (источники пара, содержащие сероводород или сернистый газ) и горячие источники. Кроме главного кратера могут быть многочисленные паразитические кратеры на склоне вулкана.

[image]

Рис. 5.4. Морфология и внутреннее

строение кальдер.

а – закрытая (концентрическая) кальдера Нгоронгогоро в Танзании диаметром 20 км;

б – открытая (эксцентрическая) кальдера Меру в Танзании диаметром около 7 км; в – схематический разрез кальдеры с молодым вулканом внутри.

Кальдера – циркообразная впадина с крутыми стенками и с более или менее ровным дном, образовавшаяся не в результате активной деятельности вулкана, а после неё вследствие провала вершины вулкана, а иногда и прилегающей местности (рис. 5.4). Образуются кальдеры в результате уменьшения давления или истощения магматической камеры и последующего проседания накопленных вулканогенных образований обычно по кольцевым разломам. Размеры кальдер до 10-15 км и более в поперечнике. Они подразделяются на кальдеры оседания, обрушения и провальные. Кроме того, выделяются кальдеры взрывные, когда явления обрушения и оседания имеют второстепенное значение, и кальдеры-вулканы, образовавшиеся на месте древнего вулкана.

Кальдеры, образовавшиеся в современное время, бывают окружены валом, называемым соммой. Она сложена вулканическими породами и имеет пологую внешнюю и крутую внутреннюю поверхности. Кольцевые долины (депрессии) в кальдере, обусловленные кольцевыми разломами и расположенные между соммой и молодым вулканом у двойных вулканов называются атрио (рис. 5.4в).

Вулканно-тектонические кальдеры проседания – это крупные структуры, часто ограниченные кольцевыми разломами, в которых кроме вулканогенного эффузивного и эксплозивного материала могут накапливаться континентальные, озёрные и морские осадки, а также формироваться силловый и дайковый комплексы. Примером такой структуры на Кольском полуострове является Контозёрская кальдера проседания диаметром около 8 км.

Кальдеры скрыто-вулканического типа представляют собой округлые депрессии, диаметр которых от 1.5 до 25 км, а глубина от 50 до 500м. Происхождение их не вполне ясно, особенно, когда в них вулканогенный материал присутствует в небольшом объёме.

Вулканно-тектонические структуры поднятия встречаются редко. Они образуются над магматической камерой или при давлении магмы в процессе перемещения её в верхние зоны земной коры. Если магма не достигает поверхности, то образуются гипабиссальные тела караваеобразной формы, например лакколиты.

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:5251 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:8408 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:5194 Грунты и основания гидротехнических сооружений

Еще материалы

Генетические типы слоистости

Образование слоистости осадочных толщ обусловлено многими причинами, которые могут проявляться на разных по площади пространствах и меняться во времени и пространстве. Основными являются: среда (водная, воздушная); динамика и кинематика движения...

01-10-2010 Просмотров:13510 Геологическое картирование, структурная геология

Особые случаи нивелирования.

Нивелирование через реку. При пересечении трассой реки шириной до 150 м нивелирование ведут как обычно. При ширине реки до 300 м на её берегах примерно на одинаковой высоте закрепляют точки. В 20-30...

13-08-2010 Просмотров:9169 Инженерная геодезия. Часть 2.

Прилади для орієнтування на місцевості

При орієнтуванні на місцевості для виміру магнітних азимутів і магнітних румбів користуються бусолями (рис. 2.5, а) і компасами (рис. 2.5, б). Головні частини бусолі або компаса — магнітна стрілка 1, що...

29-05-2011 Просмотров:6326 Інженерна геодезія