Menu

Внутреннее строение интрузивных тел

По типу внутреннего строения интрузивы могут быть подразделены на недифференцированные (однородные и неоднородные), дифференцированные и расслоенные, а по условиям образования – на одноактные и многоактные (многофазные). Внутренняя анизотропия интрузивных тел выявляется по присутствию в их разрезе зональности, полос, отличающихся друг от друга по составу или структуре, развитием план-параллельных, линейных и других структур.

Зональность в строении интрузивов проявляется в разных масштабах и зависит от многих параметров и, в первую очередь, от размеров массива. Ширина отдельных зон может достигать от десятков сантиметров до десятков километров. Известна зональность двух родов: 1 – сингенетическая, образованная при кристаллизации одной порции магмы в замкнутой камере (рис. 4.20); 2 – эпигенетическая, возникающая при последовательном внедрении отдельных порций магмы из глубинного очага. От контактов к центу интрузива выделяется три крупных зоны – зона закалки, краевая зона и внутренняя зона.

Зона закалки – эндоконтактовая зона массива, представленная тонкозернистыми или стекловатыми породами. Образуется в результате быстрого остывания и кристаллизации, вследствие большой разницы в температуре магмы и контакта. Мощность её может быть незначительной. Состав пород зоны закалки соответствует составу исходной магмы.

Краевая зона сложена породами промежуточного типа между низкотемпературными породами эндоконтакта и высокотемпературными породами внутренних частей массива. Состав и структуры пород в верхней, нижней и боковых частях краевой зоны различны.

Внутренняя зона занимает основную часть магматической камеры (интрузива) и сложена либо однородными породами (в недифференцированных массивах), либо расслоенной серией пород (в расслоенных интрузивах).

 

4.3.1. Внутреннее строение недифференцированных интрузивов

Недифференцированные интрузивы относительно изотропны. Наблюдающаяся в них неоднородность обусловлена различиями скорости охлаждения магмы в эндоконтактовой и ядерной части интрузивных тел, либо процессами ассимиляции и контаминации чужеродного материала. В первом случае петрографическая неоднородность выражена в структурных особенностях пород (крупности зерна, изменении типа структур от участка к участку), во втором в основном в текстурных особенностях (наличии теневых текстур, шлиров, ксенолитов вмещающих пород).

 

4.3.2. Внутреннее строение дифференцированных интрузивов

Дифференцированные интрузивы представляют собой совокупности отделённых друг от друга чёткими поверхностями раздела (интрузивными контактами) тел, каждое из которых сложено породами определённых видов, связанных между собой постепенными переходами. Другими словами, дифференцированные плутоны характеризуются грубой петрографической дискретностью.

При изучении внутреннего строения дифференцированных интрузий выдерживается следующая последовательность работ. Вначале проводится расчленение массива на подкомплексы (фазы внедрения) и последовательность подкомплексов (с признаками горячих, холодных контактов и т.д.). Например, в Лицко-Арагубском интрузивном комплексе было выделено пять фаз внедрения (рис. 4.20) с возрастом I, II и IV фазы 1774±9, 1763±7 и 1762±9 млн. лет соответственно (Ветрин и др., 2002).

Затем изучается петрографический состав каждого из подкомплексов и на основании этих данных определяется тип интрузива. Если состав пород разных подкомплексов различен (например, первый подкомплекс – габбродиориты, второй – гранодиориты, третий – граниты), интрузивы называются сложными. Если породы разных подкомплексов отличаются друг от друга лишь структурными и текстурными особенностями (например, первый подкомплекс – крупнозернистые равномернозернистые граниты, второй – среднезернистые неравномернозернистые граниты, третий – мелкозернистые порфировидные граниты), то плутоны принято называть многократными.

 

Рис. 4.20 Схема строения северо-западной контактной зоны Большого Урагубского массива (по Ветрину В.Р. и др., 1975).

1 – диабазы; 2 – граносиениты V фазы; 3 – лейкократовые мелкозернистые граниты IVфазы;

4 – мелкопорфировые граниты и гранодиориты III фазы;

5 – катаклазированные порфировидные граниты главной фазы и бластомилониты по ним; 6 – порфировидные граниты II (главной) фазы; 7 – диоритовые лампрофиры и метасоматиты по ним; 8 – гнейсы кольской серии;

9 – амфиболиты;

10 – плагиограниты;

11 – разрывные нарушения.

 

[image]

Каждый подкомплекс (фаза внедрения расплава) образует совокупности интрузивных тел разного размера. Поэтому породы каждого подкомплекса должны быть расчленены на петрографические разновидности, для которых должны быть определены условия их залегания среди других пород, территориальная распространённость, основные структурные и текстурные характеристики и основные отличия от других пород.

 

4.3.3. Внутреннее строение расслоенных интрузивов

К числу расслоенных интрузий относят те интрузивы, которые удовлетворяют хотя бы одному из ниже перечисленных условий:

1) наличие серии выдержанных слоёв, согласно залегающих один на другом без секущих взаимоотношений и без закалённых краевых оторочек (ритмическая расслоенность);

2) систематические изменения состава минералов (твёрдые растворы), однозначно связанные с положением в разрезе интрузива (скрытая расслоенность).

[image]

Рис. 4.21. Схема строения затвердевающего интрузива.

1 – главный объём расплава; 2 – зона кристаллизации; 3 – затвердевшие части интрузива; 4 – зона закалки; 5 – очаги остаточного расплава; 6 – затвердевшие жильные породы; 7 – вмещающие породы; 8 – конвекционные токи.

Рис. 4.22. Принципиальная схема строения расслоенного интрузива.

1 – зона закалки; 2 – краевая серия (I – нижняя группа, II – боковая группа, III – верхняя группа); 3 – центральная (расслоенная) серия; 4 – зона термального воздействия интрузива; 5 – вмещающие породы.

При характеристике внутреннего строения расслоенных интрузивов (рис. 4.21, 4.22) необходимо выделить три группы пород: 1) зону закалки; 2) краевую группу пород (породы внешней оболочки); 3) расслоенную группу пород (породы ядерной части). Породы краевой группы в свою очередь по местоположению подразделяют на верхние, боковые и нижние. Между расслоенной и верхней краевой группой располагается промежуточный горизонт.

Зона закалки, как отмечалось выше, небольшая по мощности, представлена мелкозернистыми породами, соответствующие по составу исходной магме.

Краевая группа пород подразделяется на верхнюю группу, боковую и нижнюю (рис. 4.22). Верхняя краевая группа пород осложняется гетерогенностью, которая обусловлена многочисленными включениями вмещающих пород и пластовыми телами гранофиров и микропегматитов. Между верхней краевой группой и расслоенной серией может быть промежуточный («сандвичев») горизонт. Направления изменения кумулуса в расслоенной и в верхней краевой группе имеют встречный характер, отражая их формирование от стенок камеры к единому структурному центру – промежуточному горизонту. Он образуется на самой поздней стадии становления интрузива и поэтому представлен породами с наиболее низкотемпературными минеральными ассоциациями без кумулятивных структур. Боковая краевая группа обычно состоит из двух частей – внешней и внутренней, различающихся по строению и составу пород. Породы внешней части образованы из недифференцированной мантии, а кристаллы, например, плагиоклаза могут быть вытянуты длинными осями внутрь массива. Породы внутренней зоны могут быть сопоставимы с породами расслоенной группы, в них может быть полосчатость течения, обычно субпараллельная внешнему контакту интрузива. Контакт между боковой краевой и расслоенной группами представляет собой зону перехода мощностью от 1 м и более. Породы расслоенной группы у контакта с боковой в зоне мощностью до 100 м характеризуются максимальными наклонами слоёв, иногда с нарушением их залегания. Нижняя краевая группа, расположена в основании массива, имеет небольшую мощность и характеризуется маломощной зоной закалки и расслоенной зоной с субгоризонтальным расположением слоёв.

[image]

Рис. 4.23. Схема внутреннего строения (а) и разреза (б) Шельтингского расслоенного плутона, по В.В.Солодкевичу (1978).

1 – закалённая краевая фация; 2 – краевые группы; 3 – расслоенная группа; 4 – «сандвичев» горизонт; 5-10 – пачки переслаивания (5 – дунитов и перидотитов, 6 – перидотитов и пироксенитов, 7 – пироксенитов, 8 – норитов и габброноритов, 9 – габброноритов и габбро, 10 – габбро и габбродиоритов); 11 – границы крупных мегаритмов плутона; 12 – направленность формирования плутона; I, II, III – мегаритмы.

Расслоенная группа

Для расслоенной группы, особенно для её нижних и средних горизонтов, типично проявление макро- и микрорасслоенности (рис. 4.22, 4.23). Нередко интервал расслоенных пород состоит из сотен и тысяч слоёв. Расслоенность обусловлена переменным количеством одних и тех же породообразующих минералов в вертикальном разрезе. У смежных слоёв нередко наблюдаются чрезвычайно резкие различия количественно-минерального состава при относительно однородном или постепенно изменяющемся составе внутри слоя.

Следовательно, расслоенность можно представить в виде серии гомогенных единиц, разделённых плоскостными границами. В тектонически-ненарушенных интрузивах границы почти горизонтальны в центральных частях массива и наклонены внутрь массива в его краевых частях. Чем ближе к боковой группе, тем наклон слоёв круче. Слои могут прослеживаться параллельно друг другу на огромные расстояния, многие в пределах всего массива.

 

По характеру размещения минералов в слоях различают два рода ритмов. В ритмах I рода темноцветные минералы внутри полосы распределены равномерно и оба контакта обладают одинаковой резкостью или постепенностью переходов к лейкократовым прослоям. В ритмах II рода темноцветные минералы внутри полосы распределены неравномерно. Один из контактов резкий, другой – постепенный. Резкий контакт отвечает основанию ритма. От основания к кровле ритма содержание темноцветных минералов, а нередко, и их размер постепенно уменьшаются. Среди ритмов II рода выделяются две разновидности: 1 – непрерывные ритмы, обладающие полной параллельностью в ритмах и границах между ними; 2 – прерывистые ритмы – при общей субпараллельности полос в различных ритмах основания ритмов не параллельны, а образуют глубокие карманы в кровлевую часть нижележащего ритма. Прерывистые ритмы встречаются значительно реже, чем непрерывные.

В зависимости от мощности слоёв ритма выделяют макроритмичную расслоенность (от первых метров до десятков метров), мезоритмичную (от десятков сантиметров до первых метров) и микроритмичную (мощности слоёв от нескольких миллиметров до 10 сантиметров).

Расслоенную группу при изучении расчленяют на петрографические разновидности, ритмические единицы и зоны.

Петрографические разновидности выделяются на основании количественно-минералогического состава пород, а также по их структурным особенностям, например, ортокумулаты, адкумулаты, мезокумулат и гетерокумулаты по Л.Р.Вейджеру (Wager, 1960) и аккумулаты (Upton, 1961). Выявление различных типов кумулатов помогает яснее представить этапы и условия протекания процесса кристаллизации магмы.

Кумулаты (от латинского слова cumulus – куча, кучное скопление) – продукты аккумуляции минералов того или иного состава, представляющие фракции производных ранней кристаллизации магмы. В кумулатах различаются кумулы, или зёрна минералов, продуктов ранней кристаллизации магмы, и интеркумуляционный расплав, кристаллизующийся в промежутках между кумулами. Кристаллизация интеркумуляционного расплава может продолжаться долгое время в течение большого интервала температур. Скопления кумул – кумулаты – могут образовывать слои течения мощностью в несколько десятков метров. По мере кристаллизации изменяется не только состав кумул, но и остаточной интеркумуляционной жидкости, последняя нередко приближается к составу гранофиров (кварцевых порфиров).

Ортокумулаты – породы, состоящие из скоплений (или кумул) одного минерала и продуктов интеркумуляционного расплава. В ортокумулатах постоянное взаимодействие кумул с интеркумуляционным остаточным расплавом (т.е., реакции между жидкой фазой и кристаллами) приводит к формированию зональности в строении минералов.

К адкумулатам относятся такие кумулаты, в которых в результате диффузии происходил обмен веществом между интеркумуляционным расплавом и магмой, в результате чего интеркумуляционный расплав сохранялся постоянным, а кумулы характеризуются однородным (не зональным) сложением. Адкумулаты могут образоваться также в результате выжимания интеркумуляционного расплава в процессе движений, что способствует предотвращению реакций между кумулами и интеркумуляционным остаточным расплавом.

Мезокумулаты занимают промежуточное положение между ортокумулатами и адкумулатами.

Гетерокумулаты сходны с адкумулатами, т.е. образуются в результате диффузии вещества из магмы, но отличаются тем, что интеркумуляционный расплав кристаллизуется при более высокой температуре с образованием пойкилитовой структуры (крупные кристаллы высокотемпературного минерала цементируют кумулы другого минерала).

Аккумулат – порода, состоящая только из кумула, представленного одним минералом (мономинеральная порода, например, анортозит).

В ритмитах кумулаты различного состава в виде слоёв течения светлого и тёмного цветов часто чередуются между собой. Светлый и тёмный слои течения составляют один ритм.

Выделение ритмических единиц основывается на легко различимом признаке – повышенной концентрации наиболее высокотемпературного кумулативного минерала в их основании и более низкотемпературного – в их верхах, а также увеличение количества интреркумулативного материала вверх по разрезу. Повторение одинаковых наборов пород во многих ритмах расслоенной группы свидетельствует о многократной повторяемости условий кристаллизации магматического расплава. Всю ритмическую серию лучше называть как кумулат определенного минерального состава. Кумулативные минералы в определении породы следует перечислять в порядке увеличения их количества, например, оливин-бронзит-плагиоклазовый кумулат – ритмическая единица, в которой преобладает плагиоклаз.

Части разреза расслоенной группы, в которых формировались определённые минералы кристаллического осадка или их ассоциации, называются зонами (мегаритмами). Наилучшими признаками для разделения расслоенной группы на зоны служит появление и исчезновение кумулативных минеральных фаз.

Для объяснения происхождения полосчатости предложено много гипотез. Главнейшие из них составляют три группы:

1. Ликвационные гипотезы – расщепление однородной магмы в жидком состоянии (до кристаллизации первых твёрдых фаз) на две или несколько несмешивающихся жидкостей и кристаллизация из них полос разного состава.

2. Гипотезы кристаллизационной дифференциации с фракционированием твёрдых фаз. Существо их состоит в отделении и концентрации выделившихся из магмы кристаллов и образовании из них полос разного состава. В эту категорию включаются процессы:

а) осаждения или всплывания кристаллов (гравитационная дифференциация);

б) образования скоплений кристаллов в процессе движения магмы (кинематическая дифференциация);

в) всплывания кристаллов с одновременным движением не в вертикальном направлении (гравитационно-кинематическая дифференциация).

3. Гипотеза затвердевания, по которой главнейшее значение имеет температурный фактор, а кристаллизация происходит в условиях полностью изолированной магматической камеры.

В качестве основных причин, приводящих к кристаллизационной дифференциации можно назвать переохлаждение расплава, диффузия магмы, изменение теплового режима, конвекционные токи и гравитация.

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:4223 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7422 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4412 Грунты и основания гидротехнических сооружений

Еще материалы

Инструкция по монтажу центробежных компр…

Центробежные компрессоры с горизонтальным разъемом корпуса независимо от числа корпусов, редукторов или мультипликаторов монтируют последовательно, начиная с редуктора (мультипликатора), который выверяют...

12-08-2009 Просмотров:15130 Монтаж компрессоров, насосов и вентиляторов

Общие сведения о геологических картах

Геологической картой называется графическое изображение на топографической карте или на топографической или географической основе с помощью условных знаков геологического строения территории, т.е., распространения и условий залегания горных пород на земной...

01-10-2010 Просмотров:15805 Геологическое картирование, структурная геология

Нетектонические трещины

Образование нетектонических трещин в горных породах обусловлено изменениями внутренних свойств пород под влиянием сил, проявляющихся при экзогенных процессах вблизи или на поверхности Земли. Они подразделяются на следующие разновидности: 1. Первичные трещины. 2...

01-10-2010 Просмотров:10117 Геологическое картирование, структурная геология