Menu

Стереографические проекции.

Если углы между гранями кристалла измерены, их можно нанести на диаграмму для демонстрации как соотношения между ними, так и симметрии кристалла. Для этого используются стереографические проекции, обладающие важным свойством, которое состоит в сохранении соотношений углов, или, иначе говоря, стереографические проекции дают представления об истинных углах.

Необходимо отметить, что благодаря этому свойству стереографические проекции помимо использования в кристаллографии широко применяются для решения многих других геологических задач, среди которых установление угловых взаимоотношений плоскостей и различных направлений. Данная область включает определение углов падения и простирания пластов, углов падения складок или линейных структур, ориентацию горных выработок и наклонных буровых скважин и т.д.

Ниже кратко описываются принципы построения таких проекций и их свойства. Более полные сведения о стереографических проекциях, вытекающие из их основных принципов, даны в Приложении I.

Представим себе, что кристалл помещен в полую сферу и что из центра этой сферы проведены прямые, перпендикулярные граням кристалла, до пересечения с поверхностью сферы (рис. 3.17). Точки пересечения называются полюсами граней в сферической проекции. Угловые взаимоотношения граней выражаются в значениях широты и долготы этих полюсов на сфере, и симметрия их пространственного расположения будет четко проявляться несмотря на любые нарушения в реальном кристалле.

С

Рис. 3.18 Полюс грани в стереографической проекции.

Рис. 3.17 Сферическая проекция граней кристалла.

Чтобы преобразовать стереографическую проекцию в двумерную диаграмму, вообразим горизонтальную плоскость, проходящую через центр сферы, и соединим все полюса, находящиеся в верхней полусфере, прямыми линиями с южным полюсом сферы. Точки пересечения этих прямых с центральной горизонтальной плоскостью называются полюсами граней в стереографической проекции (рис. 3.18). Полюса нижней полусферы, которые должны попадать на внешнюю сторону экваториального круга, если их спроецировать из южного полюса (например, полюс D' на рис. 3.19), соединяются с северным полюсом и наносятся, как и предыдущие, на пересечении соединяющих линий с экваториальной плоскостью. Верхние и нижние полюса граней на сферической проекции различаются на стереографической проекции путем присвоения им разных символов: полюса граней верхней полусферы обозначают точкой, а нижней — кружком.

Чтобы найти место расположения на стереографической проекции, или стереограмме, полюса какой-либо грани, нужно иметь две координаты, подобно тому как для определения точки на земной поверхности необходимо знать ее широту и долготу. Верхняя горизонтальная грань кристалла, помещенного в центр сферы, наносится в центре стереограммы, тогда как вертикальные грани

Рис. 3.19 Проекции полюсов со стороны верхней и нижней полусфер.

размещаются по периферии круга, который называется основным кругом проекций или просто кругом.

Путем нанесения одной из измеренных зон (см. разд. 3.5.3) на основной круг мы создаем базу для нанесения всех остальных граней. В кристалле, изображенном на рис. 3.15 (4), для этой роли, очевидно, стоит выбрать зону а, в, g,---g', у которой преобладающее направление ребер определяет длинную ось кристалла. Полюса всех граней одной зоны будут лежать на большом круге сферы1. Следовательно, определив сначала места расположения полюсов граней, общих для двух зон, мы можем затем провести для них большие круги и нанести на них полюса других граней.

Стереографическая проекция обладает следующими свойствами, важными для проведения минералогических исследований:

1. Она сохраняет истинные углы (как было отмечено выше).

2. Большие и малые круги сферы изображаются на проекции в виде окружностей или их дуг, а потому они могут быть нанесены с большой точностью с помощью циркуля.

В Приложении I детально рассматриваются геометрия проекции и основные построения, которые проводятся при ее использовании. Однако на практике построения обычно выполняются с помощью сетки Вульфа (рис. 3.20), представляющей собой серию дуг больших кругов (аналогичных меридианам) и малых кругов, расположенных между северным и южным полюсами основного круга (аналогичных параллелям). Такая сетка позволяет наносить полюса граней по их координатам и строить большие круги, проходящие через две или несколько точек.

Точки и линии обычно наносятся на листе кальки, которая кладется поверх отпечатанного шаблона сетки и вращается вокруг булавки, закрепленной в центре сетки. Пример использования сетки Вульфа приведен на рисунке 3.23

3.4.1 Построение стереограмм с помощью сетки Вульфа

На рис. 3.21 изображен в плане кристалл, который на рис. 3.17 расположен в центре сферы. Угол между гранями a составляет 90°, между гранями a и d — 45° и между гранями a и o — 54°44'. Построенная для этого кристалла стереографическая проекция показана на рис 3.22

Для нанесения граней на стереограмму можно использовать сетку Вульфа, показанную на рис. 3.20. Лист кальки кладется поверх сетки и прикрепляется булавкой в ее центре. Места расположения полюсов на основном круге определяются с помощью отградуированной окружности сте-реограммы. Грань а должна находиться в центре. Каждый вертикальный круг зоны, например а аа'" или сГadn, наносится так, чтобы он проходил через диаметр сетки С-Ю или В-3, что достигается поворотом кальки. Стереографические углы (например, a^d = 45°; a^o = 54°44') откладываются по отградуированному диаметру. Для нанесения наклонных граней сначала откладываются точки расположения их полюсов, а затем по ним строятся большие круги от одного полюса окружности к другому. Когда мы таким обра-

С

ю

Рис. 3.20 Сетка Вульфа.

Рис. 3.21 Вид в плане кристалла, изображенного на рис 3.17 Связанные элементами симметрии грани обозначены одинаковыми буквами

Рис. 3.22 Стереографическая проекция кристалла, изображенного на рис. 3.17 и 3.21.

зом разместим полюса и соединим их линиями, то увидим, ложатся ли они на общий большой круг. Кроме того, действуя подобным способом, можно использовать два полюса для определения большого круга.

3.4.2 Вращение стереограммы

Основное значение сетки Вульфа заключается в возможности одновременного перемещения всей совокупности нанесенных на нее полюсов (а также граней) и придания им различных ориентации, что позволяет оценивать их взаимоотношения с другими имеющимися совокупностями полюсов. Совместим1 посредством поворота кальки ось, вокруг которой необходимо осуществить вращение, с диаметром сетки В-3. Если теперь передвигать ось вдоль этого диаметра в сторону основного круга или к центру, то все нанесенные на кальку полюса будут сдвигаться по малым кругам, на которых они расположены, на один и тот же угол, оставаясь в своей полусфере. (Возьмем сферическую проекцию и представим себе ее в виде шара, покрытого чехлом или какой-нибудь оболочкой, способной скользить по его поверхности. Осью, вокруг которой можно вращать кальку, является воткнутая в чехол булавка, и с ее помощью можно передвигать чехол по шару. Теперь представим себе, как будут перемещаться нанесенные полюса, когда вы начнете двигать эту булавку.)

Передвинув ось на требуемое расстояние к основному кругу, совместим ее вращением кальки с диаметром сетки С-Ю. Теперь, снова вращая кальку, можно перемещать полюса в соответствующем направлении вдоль малых кругов на необходимое число градусов.

Если ось сдвигалась к центру, то можно перемещать полюса на требуемое расстояние по концентрическим кругам, расположенным вокруг центра стереограммы.

На рис. 3.23 показана последовательность подобной процедуры при построении стереограм-мы кубического кристалла флюорита, сдвойнико-ванного почти перпендикулярно грани октаэдра (см. разд. 3.10 и рис. 3.48). Благодаря тому что при построении стереограммы сдвойникованно-го кристалла всегда требуется вращение на 180° (разд. 3.9), в стереографической практике проще строить большие круги по двойниковой оси в ее исходном положении, а затем последовательно наносить полюса граней. При завершении построения полюс грани продвигается вдоль большого круга на соответствующее число градусов к двойниковой оси до ее положения в состоянии двойнико-вания. Окончательный результат достигается при повороте большого круга с зафиксированным на нем полюсом грани на 180° вокруг оси двойникования.

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:4671 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7834 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4735 Грунты и основания гидротехнических сооружений

Еще материалы

Признаки наличия разрывных нарушений

Для установления разрывных нарушений при геологическом картировании и других исследованиях существует ряд признаков, которые можно выявить как прямыми наблюдениями, так и косвенными методами. К выявляемым прямыми наблюдениями признакам, свидетельствующим о наличии...

01-10-2010 Просмотров:9744 Геологическое картирование, структурная геология

Производство демонтажно-монтажных работ …

Основные схемы монтажа. В зависимости от степени износа строительных конструкций, порядка их демонтажа, объемов и характера усиления, количества сменяемых междуэтажных перекрытий и используемых монтажных...

31-07-2009 Просмотров:13005 Реконструкция промышленных предприятий.

Влияние крутящего момента на прочность м…

При вращательном бурении моноопора испытывает реактивный крутящий момент. В результате в ее сечениях возникают касательные напряжения т = MK/Wp, (3.21) где MK - крутящий момент; Wp - полярный момент сопротивления кручению сечения моноопоры. Для...

12-01-2011 Просмотров:4964 Морские буровые моноопорные основания