Menu

Способы устройства проемов, отверстий и разделения частей конструкций

Для устройства проемов и отверстий в различных конструкциях и для разделения частей конструкций при их разборке применяют следующие способы: вручную; ручные машины; газокислородную резку; электродуговой; термический; гидроразрушение.

Устройство проемов и отверстий вручную с применением простых инструментов (кувалд, молотков, ломов, кирок, топоров) возможно как исключение при очень небольших объемах работ.

В качестве ручных машин используют пневмо- и электросверлильные машины, пневмо- и электромолотки, перфораторы, установки с фрезерными и гладкими дисками из абразивных материалов.

 

качестве ручных машин используют пневмо- и электросверлильные машины


Для сверления отверстий диаметром до 9 мм в сталях средней твердости, пластмассе, дереве, кирпиче и бетоне рекомендуется применять ручные сверлильные электрические машины типа ИЭ-1026А, для сверления отверстий диаметром до 25 мм в железобетоне, кирпиче — типа ИЭ-1029 с саморезными кольцевыми сверлами. Может быть также применена ручная пневматическая сверлильная машина ИП-1023 с алмазными кольцевыми сверлами.

/ — разбираемый проем; 2 — резиновый рукав для подачи воды; 3 — место оператора-сверловщика И разряда; 4 — станок для алмазного сверления ИЭ-1801; 5 — место оператора-сверловщика 111 разряда; 6 — инвентарные подмости; 7 — самосвал; 8 — электромостовой кран

Сверление алмазными сверлами производится следующим образом: с помощью механизма подачи сверло подводится на расстояние 10—15 мм от плоскости сверления; ось сверла совмещается с осью инструментальной разбивки отверстия; устанавливается оптимальная подача воды в пределах 5—6 л -в 1 мин; включается электродвигатель, с помощью механизма подачи сверло плавно врезается в бетон на глубину 3—5 мм и при постоянном числе оборотов усилием ручной подачи производится сверление на всю глубину.

Для образования проема (рис. 6.13) размером 2X3 м образуют три участка размером 2x1 м для удобства транспортирования разрезаемых блоков. На каждом участке сначала производится нижний рез, затем боковые и верхний.

Верхний блок стропится двумя универсальными стропами грузоподъемностью 2 т, нижние — специальным захватом типа РШ-2 (рис. 6.14). Погрузка блоков в самосвал производится электромостовым краном грузоподъемностью 2 т.
Работы по сверлению, перестановке подмостей и погрузке выполняются операторами-сверловщиками III и II разрядов со смежной профессией такелажника II разряда.

Для бурения отверстий диаметром 16 мм в кирпичной кладке и бетоне используют ручные электрические перфораторы.

Для устройства борозд в железобетоне, бетоне и кирпичной кладке следует применять ручные электрические бороздоделы ИЗ—6401 выборгского завода «Электроинструмент». Для этих работ может быть применен бороздодел ИЗ-6403, а также ручные электрические перфораторы. Для прорезки отверстий, штраб и гнезд отдельных проемов в железобетонных стенах и перекрытиях применяют установки электродуговой резки, состоящие из держателя электродов, фиксатора держателя, многожильных токопроводов сечением от 16 до 110 м2 и длиной до 40 м, графитных и угольных электродов и трансформатора.

При помощи установки электродугового плавления (резки) можно производить разборку железобетонных колонн каркасов промышленных зданий. Днепропетровским филиалом НИИСП Госстроя УССР разработана установка электродугового плавления для разборки сборных железобетонных колонн. На рис. 6.15 дана схема выполнения этого процесса для колонн сечением 600X400 мм каркаса промышленного здания пролетом 18 м и шагом колонн 6 м.

Сначала стропуют колонны при помощи фрикционного захвата грузоподъемностью 5 т для удерживания ее краном CMK-1Q грузоподъемностью 10 т в вертикальном положении до окончания работ по разрезке. Затем звено электросварщиков последовательно проплавляет три отверстия у основания колонн.







Рис. 6.15. Схема разборки сборных железобетонных колонн каркаса промышленного здания при помощи установки электродугового плавления:
/ — трансформатор ТДФ-2001; 2 — установка элбктродугового плавления; 3 — разбираемая колонна; 4 — автокран CMK.-I0; 5 — автомобиль МАЗ-500; Ст. I— Ci. 10 — стоянки монтажного крана; V—10' — последовательность разборки здания

После прожига одного отверстия осуществляют технологический перерыв для охлаждения инструмента в течение 20 мин.

Разрушенную колонну грузят краном СМК-Ю на автомобиль МАЗ-500 и вывозят за пределы цеха. Со стоянки № 1 разбирается колонна позиции 1; со стоянки №2 — позиции 2 и т. д. При выполнении работ установкой дуговой резки железобетона необходимо применять меры по предохранению обслуживающего персонала от воздействия дыма, теплового и светового излучения и поражения током.

При способе термической резки бетона и железобетона (так называемое «кислородное копье») стальная труба диаметром 17—20 мм, заполненная стальными прутками, присоединяется с помощью гибкого армированного шланга к баллону с кислородом. Затем конец трубы раскаливают докрасна, после чего в нее подают кислород. При этом железо горит в кислороде и плавит бетон, а шлак выдувается из отверстия излишками кислорода.

«Кислородным копьем» рекомендуется резать горизонтальные и восходящие вертикальные отверствия и штрабы, так как шлак в этих случаях удаляется беспрепятственно. Этот способ может быть применен для резки бетона под водой.

Для резки бетона и железобетона может также применятся термитно-кислородная установка (см. рис. 6.4). При поступлении кислорода в насадку у питателя эжектируется мелкодисперсная смесь железного и алюминиевого порошков термита в составе 80 % железного порошка марки ПЖЕ и 70 % алюминиевого порошка АВП. На выходе из насадки смесь поджигается с помощью открытого огня (паяльной лампы). Под воздействием высокотемпературного факела (на расстоянии 30—100 мм от конца насадки температура достигает 3500—4000°) поверхность бетона плавится, за счет чего происходит процесс резания (прожигания). При этом прочность бетона снижается на 2—3 см от кромки реза.

НИИСП Госстроя УССР разработана установка для термитно-кислородной резки железобетонных конструкций УПКР-2 (рис. 6.16).

Резка колонн и балок производится методом последовательного проплавления 6 отверстий диаметром 35 мм (колонн — в горизонтальном направлении, балок — снизу вверх). Колонны и балки до окончания работ по их разрезке поддерживаются краном СМК-Ю грузоподъемностью 10 т. При разрезке балок каркаса кислородный баллон устанавливается на отметке ±0,00 на расстоянии 10 м от рабочего органа, питатель УПКР-2 — на трубчатых лесах на расстоянии 2 м от места разрезки, при этом леса переставляются по ходу разрезки балок в оределенной последовательности. Разработанные конструкции погружаются автокраном К-162 (К-4561) грузоподъемностью 16 т в автотранспорт при помощи фрикционного захвата.


 

Рис, 6.16. Схема разборки железобетонного каркаса реконструируемого здания при помощи установки УПКР-2:
/ — кислородный баллон с редуктором; 2 — место оператора-резчика; 3 — огне-струйный орган установки УПКР-2; 4 — место подсобного рабочего; 5 — питатель подачи термитной смеси; 6 — леса с ограждением верхнего яруса; 7 — монтажный кран К-162; 8 — автомобиль МАЗ-500; 9 — места разрезки балок; 10 — места строповки разрушаемой балки; И — универсальный строи грузоподъемностью 3 т; 12 — двухветвевой строп грузоподъемностью 3 т; Ст. 1, Ст. 2 — стоянки монтажного крана; Г—10' — последовательность разборки каркаса

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:2427 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:4953 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:2384 Грунты и основания гидротехнических сооружений

Наши рекомендации

Www.dr-md.ru

Сегодня щитовидная железа www.dr-md.ru.

Реклама

Еще материалы

Камеральные работы.

При нивелировании IV класса камеральные работы состоят из обработки нолевых журналов, предварительного в ы -ч и с л е н и я отметок точек постоянного съемочного обоснования и постоянных и...

12-08-2010 Просмотров:6303 Постоянное планово-высотное съемочное обоснование

Основные дефекты крыш и причины их возни…

Основными недостатками несущих конструкций крыш являются: деревянных — нарушения соединений в сопряжениях стропил, плохая гидроизоляция между каменными и деревянными конструкциями, значительный прогиб стропильных ног, гниение мауэрлата, строительных ног, обрешетки и др.; железобетонных...

31-03-2010 Просмотров:7256 Эксплуатация жилых зданий

Геодезические работы при строительстве ж…

16.1 Геодезические работы при строительстве железных дорог Восстановление и закрепление трассы. Трасса железной дороги, вынесенная на местность и надежно закрепленная на ней типовыми знаками, является основой для разбивки всех сооружений...

13-08-2010 Просмотров:12553 Инженерная геодезия. Часть 2.