Menu

Поиск по сайту

Собрание уникальных книг, учебных материалов и пособий, курсов лекций и отчетов по геодезии, литологии, картированию, строительству, бурению, вулканологии и т.д.
Библиотека собрана и рассчитана на инженеров, студентов высших учебных заведений по соответствующим специальностям. Все материалы собраны из открытых источников.
 
 
 

Семь кристаллографических сингоний.

 Существование семи видов симметрии позволяет сгруппировать все кристаллы в семь главных кристаллографических систем (сингоний), показанных в табл. 3.1.

Любой кристалл может быть отнесен к одной из семи сингоний путем простого определения элементов его внешней симметрии. В большинстве случаев кристалл будет обладать полным набором элементов симметрии, к которой он относится. Однако не все кристаллы какой-либо сингоний имеют ее полную («нормальную», или голоэдрическую) симметрию. Некоторые минералы образуют кристаллы с меньшим уровнем симметрии, чем тот, который является нормальным для их системы, но с большим набором элементов симметрии, чем у сингоний, следующей ниже в упомянутой таблице. Это происходит в тех случаях, когда атомы, окружающие узлы решетки, расположены не симметрично вокруг них. Например, на рис. 3.13 показаны галит (или каменная соль NaCl) и пирит (FeS2), элементарные ячейки которых обладают кубической решеткой F. Однако если атомы Na и Cl можно считать расположенными сферически -симметрично вокруг узлов их решетки, то группы S2 в пирите являются вытянутыми (гантелеобраз-

Таблица 3.1 Главные кристаллографические сингоний

Сингония

Симметрия голоэдрического класса

Кубическая

3AIV

Ш

11

9Р С

Тетрагональная

1AIV

11

С

Гексагональная

1AIV

6А"

С

Тригональная

 

 

 

 

(ромбоэдрическая)

111

11

С

Ромбическая

11

С

 

Моноклинная

1A"

1P

С

 

Триклинная

С

 

 

 

А — ось симметрии (надстрочные римские цифры обозначают порядок оси симметрии), Р — плоскость симметрии, С — центр симметрии.

ными) и располагаются вокруг любого атома Fe в различной ориентации к ребрам ячейки, что понижает общую симметрию кристалла. Пирит, согласно приведенной на рис. 3.37 классификации, принадлежит к классу mЗ(= 2/шЗ), и такая решетка является примитивной, а не кубической гранецен-трированной F. Галит принадлежит к голоэдрическому классу шЗш, относящемуся к кубической сингоний, с кубической гранецентрированной решеткой F.

Если учитывать сказанное, то необходимо выделять дополнительные классы в пределах каждой главной сингоний с целью найти место кристаллам с симметрией ниже нормальной. Совместно с кристаллами голоэдрических классов они образуют всю совокупность 32 видов элементов симметрии, которые описывают внешнюю симметрию всех кристаллов. Эти 32 вида симметрии приведены на рис. 3.37, а объяснения к нему даны в разд. 3.7.

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:10138 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:12268 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:8160 Грунты и основания гидротехнических сооружений