Menu

Поиск по сайту

Собрание уникальных книг, учебных материалов и пособий, курсов лекций и отчетов по геодезии, литологии, картированию, строительству, бурению, вулканологии и т.д.
Библиотека собрана и рассчитана на инженеров, студентов высших учебных заведений по соответствующим специальностям. Все материалы собраны из открытых источников.
 
 
 

Полиморфизм.

Теперь рассмотрим противоположное явление, когда соединения одного химического состава, кристаллизующиеся в различных условиях, обладают разными структурами, т. е. проявляют свойство полиморфизма. В этих случаях каждой структуре обычно дается свое название, что лишний раз подчеркивает фундаментальную роль кристаллической структуры в минералогии

Полиморфизм имеет громадное значение в связи с тем, что различные кристаллические структуры, которые может иметь одно и то же соединение, зависят главным образом от господствующих при его кристаллизации температур и давлений. В лабораторных условиях иногда удается воспроизвести преобразование одной формы в другую и определить тем самым область условий, при которых каждая из них является устойчивой Следовательно, мы в состоянии выявить условия, при которых каждая форма (или полиморфная модификация) находится в стабильном состоянии. Даже если это оказывается невозможным, мы можем использовать данную форму полиморфного соединения для сравнения одной минеральной ассоциации и соответствующих условий минералообразо-вания (т. е. минеральных парагенезисов) с другой.

Некоторые распространенные в природе полиморфные разновидности известны давно, например, для углерода (графит и алмаз), кремнезема SiO2 (низко- и высокотемпературный кварц, тридимит, кристобалит), СаСО3 (кальцит, арагонит) и Al2SiO5 (андалузит, силлиманит, кианит). Однако широкие масштабы возможного развития полиморфизма стали еще более понятны благодаря экспериментам при высоких давлениях, выполнен-

500 1000 1500 2000 Температура, "С

Рис. 2.14 Фазовая диаграмма, показывающая поля устойчивости полиморфных модификаций кремнезема.

ных П.У. Бриджменом (1882-1961; Нобелевская премия по физике за 1946 г.). В настоящее время представляется вероятным, что почти все кристаллические вещества способны к такого рода инверсиям. Минералогия высоких температур и давлений является сегодня одним из наиболее перспективных направлений лабораторных исследований в области наук о Земле.

Прекрасным примером полиморфизма может служить хорошо изученная система кремнезема SiCO2. Некоторые полиморфные модификации SiCO2 и их физические свойства приведены в табл. 2.2. Взаимоотношения между ними иллюстрирует рис. 2.13. Во всех этих минералах, за ис-

сч -4+

ключением стишовита, ион Si окружен ионами O2- в тетраэдрической координации. На рис. 2.14 представлены области температур и давлений, в пределах которых каждая из рассматриваемых полиморфных модификаций является устойчивой.

2.3.1 Полиморфные переходы со смещением

Рассмотрим вначале переход от низкотемпературного кварца к высокотемпературному (рис. 2.14), который происходит в условиях нормального давления при 573 oC. Однако если давление хоть немного повышается, то температура перехода растет. Пространственное расположение тетраэдров Si-O в высокотемпературном кварце показано на рис. 2.15,а. Тетраэдры соединяются вершинами с образованием взаимосвязанных спиралей, выходящих за пределы страницы. На рис. 2.15, б по-

Таблица 2.2 Физические и оптические свойства полиморфных модификаций кремнезема

Кристал-лографи-ческая

Минерал система

Размеры ячейки, HM

Объем

ячейки, HM3

Количество SiO2 в ячейке

Объем на единицу SiO2, нм3

Плотность, г/см3

Показатели преломления

Лешательерит Стекло

 

 

 

 

2,19

n

1,46

Кварц Тригональная

а 0,4913

0,1305

3

0,0435

2,65

пе

1,553

(низкотем

с 0,5405

 

 

 

 

no

1,544

пературный)

 

 

 

 

 

 

 

Высокотемпературные модификации

 

 

 

 

 

 

 

Тридимит Гексагональная

а 0,5046

0,1820

4

0,0455

2,27*

Пр

1,471*

 

с 0,8253

 

 

 

 

ng

1,483*

Кристобалит Кубическая

о 0,7138

0,3637

8

0,0455

2,33*

пе

1,484*

 

 

 

 

 

 

no

1,487*

Высокобарические модификации

 

 

 

 

 

 

 

Коэсит Моноклинная

а 0,714

0,6306

16

0,0394

2,92

Пр

1,594

(псевдогекса

Ъ 1,237

 

 

 

 

ng

1,599

гональная)

с 0,714

 

 

 

 

 

 

Стишовит Тетрагональная

а 0,4179

0,0465

2

0,0233

4,3

п

1,845

 

с 0,2665

 

 

 

 

no

1,800

* Эти значения относятся к низкотемпературным модификациям: моноклинному тридимиту и тетрагональному (?) кристобалиту.

Рис. 2.15 Связь тетраэдров SiO4 (а) в высокотемпературном кварце, имеющем шестерную симметрию; (б) в низкотемпературном кварце, обладающем тройной симметрией.

казана структура низкотемпературного кварца. Можно видеть, что в этом кварце тетраэдрические группы несколько повернуты относительно их положения в высокотемпературном кварце. Тем самым шестерная симметрия гексагональных пустот снижается до тройной симметрии в низкотемпературном кварце. Но такого рода изменения не сопровождаются разрушением каких-либо связей, а просто деформируют структуру высокотемпературного кварца. По-видимому, такие изменения в структуре минерала совершаются легко, и когда кристалл при нагревании или охлаждении проходит через точку перехода, структура немедленно преобразуется в другую модификацию. Все кварцы, изученные при обычных температурах, находятся в низкотемпературной форме, и чтобы исследовать высокотемпературный кварц, его кристалл должен быть нагрет выше точки перехода. Наблюдаемые изменения в структуре низкотемпературной формы называются незакалочными переходами, так как закалка не мешает их протеканию. Поскольку при таком типе полиморфного перехода происходит только незначительное смещение атомов, он назван полиморфным переходом со смещением (сдвиговым переходом) .

Кварц, который первоначально кристаллизовался при высокой температуре, может сохранять свидетельства того, что он подвергался фазовому переходу. На это указывает наличие правильных, имеющих одинаковые размеры граней в бипирамидальных кристаллах с шестерной симметрией. Однако низкотемпературный кварц обычно имеет свойственные ему грани, различающиеся по размеру в двух из трех имеющихся типов граней, и поэтому он проявляет только тройную симметрию (рис. 2.16). Правильные гексагональные кристаллы высокотемпературного кварца при нормальной температуре сложены низкотемпературной формой, но о них говорят как о параморфозах высокотемпературного кварца, так как они сохраняют свою первоначальную симметрию. Однако случайности роста могут сделать это различие, основанное на особенностях внешней формы, ненадежным, в связи с тем что первоначальный высокотемпературный кварц может вырасти искаженным, а низкотемпературная модификация возникнет с одинаковыми гранями. Но всегда формы ямок травления на этих гранях при нормальной

Рис. 2.16 Морфология высоко- и низкотемпературного кварца (а) гексагональный бипирамидальный кристалл кварца, проявляющий шестерную симметрию, (б) кристалл кварца с тройной симметрией, содержащий два типа ромбоэдров (r и z)

температуре будут различаться в двух типах граней из трех имеющихся.

Очень точные измерения температуры перехода одной модификации кварца в другую (требующие специальной аппаратуры) могут показать, в какой форме первоначально образовался тот или иной участок кварца — ведь было установлено, что переход может происходить при температуре 573 ± 0,6 oC. Отклонение зависит от термической истории кристалла.

Тридимит и кристобалит существуют в высоко-и низкотемпературной модификациях, переход между которыми обусловлен сдвиговыми превращениями. Поля их устойчивости показаны на фазовой диаграмме SiO2 (рис. 2.14).

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:15826 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:14902 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:10304 Грунты и основания гидротехнических сооружений