Menu

Поиск по сайту

Собрание уникальных книг, учебных материалов и пособий, курсов лекций и отчетов по геодезии, литологии, картированию, строительству, бурению, вулканологии и т.д.
Библиотека собрана и рассчитана на инженеров, студентов высших учебных заведений по соответствующим специальностям. Все материалы собраны из открытых источников.

Пирокластические пласты

Пирокластические пласты вулканического происхождения состоят из обломков, имеющих размер от долей сантиметра до нескольких метров. Некоторые обломки состоят из вулканического стекла, образовавшегося из выброшенных в воздух и мгновенно остывших или частично раскристаллизованных капелек лавы, а некоторые – представляют отдельные кристаллы, ранее возникшие в магме.

Несцементированные пирокластические обломки пород могут быть разделены по размерам и происхождению на вулканическую пыль (< 0.25 мм), вулканический пепел (0.25-4.0 мм), лапилли (4-32 мм), фъямме (уплощённые и линзовидные обломки стекловатой лавы), шлак (пористые и стекловидные обломки), обломки (>32 мм) и бомбы (от 4см до нескольких метров). Вулканические бомбы обычно грушевидной, витой или лепёшкообразной формы, покрыты трещиноватой коркой и с пористой массой внутри (рис. 5.11). Если ядро бомбы сложено инородным телом или ранее затвердевшей лавой, то такая бомба называется бомбой обволакивания.

 

[image]

Рис. 5.11. Разные типы вулканических бомб,

по Е.Ф. Малееву (1980).

а – двухполюсная веретенообразная; б – поперечный разрез бомбы а; в – однополюсная веретенообразная; г – миндалевидная; д – поперечный разрез бомбы г; е – поперечный разрез бомбы с широким экваториальным выступом; ж – цилиндрическая ленточная; з – поперечный разрез бомбы ж; и – поперечный разрез «коровьей лепёшки»; к – «коровья лепёшка».

К эксплозивным образованиям, слагающим вулканокластические или пирокластические пласты, относятся:

● туфы, подразделяющиеся по размеру обломков на агломератовые (>50 мм), крупнопсефитовые или крупнолапиллиевые (10-50 мм), мелкопсефитовые или мелколапиллиевые (2-10 мм), псаммитовые (2-0,25 мм), алевритовые и пелитовые (<0.25 мм);

● затвердевший (сцементированный) пирокластический материал: туф (угловатые обломки < 4мм); туфобрекчия (преобладают угловатые обломки< 4мм, но есть и >4 мм); вулканическая брекчия (угловатые обломки > 4мм); агломерат (первично округлые обломки> 4мм); жерловый агломерат, аналогичен агломерату, но расположен в вулканическом жерле; вулканический конгломерат (в нём обломки округлены под действием водных потоков);

● тефры, сложенные вулканическими бомбами, гравием и песком;

● пемзы, агглютинаты (породы, спекшиеся в плотную каменную массу, скопления всевозможных обломков и заполняющие жерло вулкана и внутреннюю часть шлакового конуса), спекшиеся туфы, игнимбриты и др.

Граница между вулканокластическими (или пирокластическими) и вулканогенно-осадочными породами обусловлена количеством примеси осадочного материала. Она проходит между осадочно-пирокластическими породами или ортотуффитами (пирокластического материала > 50 %) и пирокласто-осадочными или паратуффитами (осадочного материала > 50 %).

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:5814 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:8757 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:5408 Грунты и основания гидротехнических сооружений