Отсутствие отражений.
казано на рисунке. Эти меньшие чем d межплоскостные расстояния вполне удовлетворяют уравнению Брэгга—Вульфа. Ряды с большими межплоскостными расстояниями не могут давать собственных отражений в связи с тем, что они будут гаситься другими отражениями (отличающимися по фазе на 1 /2l) от плоскостей с половинным расстоянием между узлами решетки, не находящимися с ними в одной фазе.
В рассматриваемом случае требование, чтобы семейство плоскостей содержало все узлы решетки, удовлетворяется, когда значение (h + к) представлено четным числом. Если (h + к) нечетное, то центральные узлы отсутствуют и никаких отражений не возникает.
Этот принцип можно обобщить в ряд правил, которые сведены в приводимую ниже таблицу и позволяют идентифицировать тип решетки по сочетанию чисел индекса, устанавливаемых на основе дифракционной картины. В тех случаях, когда необходимые ограничения не удовлетворяются, отражения будут систематически отсутствовать.
На рис. 4.18 схематически показано влияние на порошковую дифрактограмму систематического отсутствия отражений, что обусловлено типом решетки кубических элементарных ячеек.


Рис. 4.17 Отсутствие отражений.
Кроме того, систематическое отсутствие отражений связано с трансляционными элементами симметрии — плоскостями скольжения и винтовыми осями. Но отражения возникают вновь, когда распределение атомов, объединенных этими операторами симметрии, таково, что отражения от некоторых рядов плоскостей будут иметь разность фаз, равную 1/2l, и поэтому их интенсивность будет равняться нулю. Полные табличные данные систематического отсутствия отражений, связанного с операторами трансляционной симметрии, содержатся в некоторых публикациях, приведенных в конце главы.

Рис. 4.18 Порошковая дифрактограмма (Со Ka излучение с X = 0,179026 нм) кубического кристалла с а = 0,375 нм, иллюстрирующая систематическое отсутсвие отражений, связанное с типом решетки. Вверху — примитивная решетка (P): возможны все значения h, k и /; в середине — объемноцентрированная решетка (I): отражения возникают только в том случае, когда сумма h + k +l является четным числом; внизу — гранецентрированная решетка (F): h, k и l должны быть все четные или все нечетные.
Комментарии
- Комментарии не найдены
Оставьте свой комментарий
Оставить комментарий от имени гостя