Menu

О камеральных работах

Для установления отличия элементов внутреннего ориентирования снимков от элементов съемочной камеры за счет недостаточного прижима фотопластинки к прикладной рамке в момент фотографирования следует поместить негативы в снимкодержатель стереокомпаратора и, ориентировав его по оси хх, измерить расстояние между центрами горизонтальных координатных меток 1 и 2 (см. рис. 8.2). Расстояние измеряют по шкале X стереокомпаратора как разность отсчетов при совмещении измерительной марки прибора с координатными метками 2 и 1

l — х2xi. (8.18)

 

Полученная величина l не должна отличаться от номинальной величины L0, полученной из исследований камеры, более чем на 0,03 мм. Если разность L—L0 превышает 0,03 мм, то следует найти поправки. Для этого на стереокомпараторе измеряют координаты всех четырех координатных меток снимка (д:гг1г х2г2, x3z3, х4г4). Отрезки / вычисляют по формулам

 

*1=Фз-гА"4)-0,5—Xu

 

12 = х2—(А'з х±) 0,5;

 

— (zi + z8)-0,5; h — (Zi + z2) • 0,5—zit

 

где Xi, Zi — отсчеты по шкалам x и z стереокомпаратора при наведении его измерительной марки на соответствующие координатные метки.

 

Разности находят по формуле

 

А/( = /,-& (8.20)

 

где ft — номинальные расстояния, полученные из исследований фотокамеры.

 

0, х

 

6z0 = (А/4— А/3), (8.23)

 

х

 

где L0,x и L0i2 — расстояния между горизонтальными и вертикальными метками фотокамеры.

 

Прямая фотограмметрическая засечка. Пространственные координаты постоянного съемочного обоснования М определяют методом прямой фотограмметрической засечки (см. рис. 8.6) с трех изолированных фотостанций, координаты которых известны.

 

Для получения приближенных дирекционных углов оптических осей Т\, Т'г и Т'А следует в момент съемки оси снимков развернуть с помощью ориентирующего устройства на примычные углы Фх, ф2 и ср3 относительно направлений на соседние исходные точки I, II и т. д. или использовать в качестве исходных соседние фотостанции. В процессе полевых работ неизбежны погрешности в угловых элементах внешнего ориентирования. Для введения поправок в дирекционные углы оптических осей Т\, Т'2, Т'г необходимо на каждом снимке иметь не менее двух контрольных точек kx и /е2 с известными геодезическими координатами, расположенных на краях снимка вблизи оси х.

 

Каждый снимок измеряют на стереокомпараторе, определяя для точек постоянного съемочного обоснования и контрольных точек плоские прямоугольные координаты xi и zt. В измеренные координаты вводят поправки за координаты главной точки снимка, вычисленные по формулам (8.22), (8.23), а также поправки бхн, бги за неприжим, определяемые по формулам

Поправки в элементы внутреннего ориентирования снимка вычисляют по формулам

bft-l—fAk + MJ, (8.21)

Li

где б/ — поправка в фокусное расстояние, вычисляемая по формуле (8.21).

 

Исправленные картинные координаты вычисляют по формулам Xi, испр = Xi — + (8.25)

 

Zi,Hcnp = 2i—6z0 + 6ztf, г. (8.26)

 

При съемке в масштабе 1 : 1000 и крупнее необходимо определять координаты центра проекции (передней узловой точки объектива), так как при фотографировании центр проекции не совпадает с центром пункта, над которыми фототеодолит центрируется. Координаты центра проекции вычисляют по формулам

 

Xsix + dcosТ'\ |

 

YS = Y -\-d sin Т',(8'27)

 

где Xs, ys — геодезические координаты центра проекции; X, Y — геодезические координаты фотостанции; 7" — приближенный дирекционный угол оптической оси снимка; d — расстояние от оси вращения фототеодолита до передней узловой точки объектива.

 

По контрольным точкам /гх и /г2 определяют дирекционные углы на контрольные точки aki решением обратной геодезической задачи по формулам

 

tga,d= Yu~Ys АУ ,828)

 

Xki-Xs АХ v

 

Li = —= + (8.29)

 

sina^ cosocft,-

 

где Xki, Yki, Xs, Ys — соответственно координаты контрольной точки (k1 или /е2) и центра проекции (S1; S2 или S3).

 

Уточненные значения дирекционных углов оптической оси каждого снимка вычисляют по формуле

 

Ti = aki—Xki, (8.30)


(8.31)

 

/ Н-

 

в [котором Xki, „спр — исправленная по формуле (8.27) абсцисса контрольной ТОЧКИ ki.

 

Дирекционный угол оптической оси вычисляют дважды по формуле (8.30), используя точки ki и /е2, среднее значение Гср из них принимают за окончательное.

 

Дирекционный угол на определяемую точку М. вычисляют по формулам

 

апгС = Тср н- Яmi, (8.32)

 

tg*mt= *f,T , (8.33)

 

t+ of

 

где Ки — угол между оптической осыо i-ro снимка и направлением 1 на определяемую точку М, xtni, „С|,Р — исправленная по формуле (8.25) абсцисса определяемой точки.

 

Плановые координаты искомой точки /И получают из решения двух прямых засечек по известным дирекционным углам с трех фотостанций Sx, S2 и S:J и геодезическим координатам центров проекций. За окончательный результат берут среднее из двух определений.

где — угол между оптической осыо снимка и направлением на контрольную точку ki, определяемый из соотношения


 

Отметку точки М вычисляют по координатам Хм, YM, предварительно определив поправочный высотный коэффициент п.

 

Для определения коэффициента п вычисляют фотограмметрическую высоту Z()) контрольных точек по формуле

 

2ф1' = Z0 + i + zt, испр, (8.34)

 

I -г о/

 

где Z0 — отметка точки фотостанции; i — высота прибора; Li — расстояние от центра проекции до контрольной точки, вычисленное по формуле (8.29); %ki — горизонтальный угол между оптической осыо снимка и направлением на контрольную точку, вычисленный по формуле (8.28); Z;„cnp — исправленная согласно соотношению (8.26) координата контрольной точки /г; на снимке.

 

Для каждой контрольной точки вычисляют разности

 

Д Zt = Z—Ztl. (8.35)

По каждой из полученных разностей находят значение коэффициента я но формуле


 

За окончательный результат принимают среднее значение коэффициента /гср по каждому снимку.

 

По известному коэффициенту яср вычисляют отметку искомой точки по каждой контрольной точке по формуле

 

ZM1 = Z0 + i + Li cos Xmi (^^jr + Лср); (8.37)

 

за окончательное значение высоты берут среднее из трех определений.

 

Фотограмметрическая засечка с отдельных базисов фотографирован и я. При выполнении прямой фотограмметрической засечки с изолированных фотостанций координаты точек изображения получают на стереокомпараторе, измеряя снимки монокулярно. Координаты искомых точек получают методом стереофотосъемки с двух отдельных базисов фотографирования (см. рис. 8.7) с необходимой точностью. Стерео-нары снимков измеряют на стереокомпараторе стереоскопически. Для этого в левую кассету прибора укладывают левый снимок стереопары, в правую кассету правый, ориентируя так, чтобы оси координат л' и z обоих снимков были параллельны направляющим X и Z стереокомпаратора.

 

Стереоскопически наблюдая снимки, на левом снимке измеряют координаты xt и г^ точки, продольный р1 и поперечный параллаксы i]i как на каждой определяемой точке постоянного съемоч


Li cos aki

 

Затем определяют и вводят поправки 6д-0, 6z0, Ьхн, бzni в измеренные на стереокомпараторе плоские координаты xi, zi.

 

Вычисления координат производят по известной схеме.

 

Способ фотограмметрической вставки в жесткий угол. Картинные координаты Xi, zt и продольные параллаксы pi исходных точек 1, 7 и определяемых 2, 3, 4, 5, 6 (см. рис. 8.8) измеряют по соответствующим стереопарам снимков на стереокомпараторе.

 

Затем вводят поправки в измеренные координаты за нарушение элементов внутреннего ориентирования (неприжим).

 

Для обнаружения погрешностей в угловых элементах внешнего ориентирования применяют способ контрольных направлений [3 ]; в качестве контрольных используют направления на исходные пункты J и 2.

 

Измерения координат этих точек на снимках проводят с максимальной тщательностью, используя контроль измерений в две руки. Вычисления целесообразно выполнять па ЭВМ.

 

Метод пространственного фототриангулирования. В наземной фотограмметрической съемке определение координат точек постоянного съемочного обоснования методами пространственного триангулирования по обычным и эквивалентным снимкам в основном отличается лишь формированием исходных данных для получения одиночных стереомоделей.

 

Фототриангулирование производят по обычной схеме; при этом исходным материалом служат отдельные снимки (см. рис. 8.9), полученные на концах смежных базисов Slt 5а, S3, . . . Измерение картинных координат Х[, z( и параллаксов pt и qi точек по стереопаре снимков производят обычным порядком на стереокомпараторе.

 

П р и м е ч а н и е. Процессу построения одиночных стереомоделей маршрута при фототриангулировании с использованием эквивалентных снимков предшествует процесс формирования эквивалентных снимков на каждой отдельной фотостанции.

 

При аналитическом формировании эквивалентного снимка следует производить:

 

измерение на стереокомпараторе плоских прямоугольных координат опорных геодезических точек — по две в начале и в конце маршрута (рис. 8.14);

 

определение точек постоянного съемочного обоснования, запроектированных на местности (рис. 8.15);

ного обоснования, так и на контрольных точках, пространственные координаты которых определены геодезическим путем. Координаты точек на правом снимке стереопары вычисляют по формулам

iJnc. 8.14. Опорные геодезические Рис. 8.15. Расположение точек по-точки в маршруте фототриангуляции стоянного съемочного обоснования на

 

эквивалентных снимках маршрута

 

определение связующих точек маршрута — по три в каждой зоне тройного перекрытия смежных эквивалентных снимков (рис. 8.16) и связующих точек (рис. 8.17) в зонах взаимного перекрытия среднего и боковых снимков фотостаиции — по четыре в каждой зоне взаимного перекрытия;

 

определение прямоугольных координат четырех координатных меток снимка;

 

вычисление поправок в измеренные координаты за неприжим; трансформирование картинных координат боковых снимков в систему координат среднего снимка с учетом внецентренности передней узловой точки объектива фотокамеры иа фотостанции;

 

аналитическое определение угловых элементов взаимного ориентирования среднего и боковых снимков с использованием измеренных картинных координат связующих точек;

 

вычисление окончательных значений преобразованных координат эквивалентного снимка.

 

Измерение картинных координат точек на стереокомпараторе выполняют по обычной программе. Исправляют измеренные координаты за изменение мест нулей шкал прибора и за смещение по высоте объектива фотокамеры от его среднего положения.

 

Определяют коэффициенты поправок, зависящие от элементов неприжима снимка к плоскости прикладной рамки путем сравнения измеренных расстояний между координатными метками обрабатываемого снимка с их значениями на эталонном снимке. Ко-узловой точки объектива на оси Х^ и Уф фотограмметрической системы координат данного снимка, вычисляемые по формулам

Рис. 8.16. Расположение связующих точек в маршруте

Рис. 8.17. Связующие точки для формирования эквивалентного снимка

 

— d sin ф; dY = d (1 — cosq>).

 

Эквивалентный снимок формируют путем подорнентировапия боковых снимков к центральному по двум парам связующих точек (см. рис. 8.16). Так как угловые элементы а, со, к взаимного ориентирования снимков в общем случае не равны заданным и искажают тем самым координаты точек снимков, для каждой из четырех связующих точек составляют уравнения погрешностей

в которых

,0 ,0 s где x'i , zi — координаты связующих точек среднего снимка, исправленные за неприжим; х1.11, г'гп — координаты связующих точек боковых снимков, полученные, по формулам (8.42).

 

Угловые величины а, со, выраженные в радианной мере, находят из решения системы нормальных уравнений

 

[of + ЬЦ a+\a{bi+bili\ ш-МпП] и— [а^-ШАг] =И;

 

[&? + й] со - [biZ\u — lixln] У.-[biAxi + hAzi} = 0; [гГ+*Н K-[zlnAxi-xluAzi] = 0.

 

(8.46)

 

Уравнения погрешностей (8.44) и нормальные уравнения (8.46) составляют независимо для формирования правой и левой частей эквивалентного снимка.

 

Получив из решения нормальных уравнений неизвестные а, со, х, координаты связующих точек преобразуют по формулам

где направляющие кос инусы

 

ai = cos a cos х— sin a sin со sin х; а2 = sj® a cos со;

 

а3 — —cosasinx—sinasin cocosx; by — cos со sin x;

 

62 = sin со; (8.48)

 

b3 — cos со cos x;

 

— —sin a cos x—cos a sin со sin x; c-2 = cos a cos со.

 

c3 = sinasinx—cos a sin со cosx.

 

Решение нормальных уравнений (8.48) и уравнений трансформи рования (8.47) выполняют последовательно тремя итерациями.

 

Совокупность всех приведенных точек на двух боковых и одном среднем снимках, полученных с одной фотостанции, приведенных в единую систему координат среднего снимка, является эквивалентным снимком цепи фототриангуляции.

 

Метод последовательного соединения эквивалентных снимков в общую модель цепи фототриангуляции аналогичен методу аналитической пространственной фототриангуляции, выполняемой по аэрофотоснимкам.

 

Формирование эквивалентных снимков осуществляют с помощью ЭВМ по известной программе, разработанной в НИИПГ. Определение координат точек постоянного съемочного обоснования производят по программе ИВЦ ГУГК.

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:2595 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:5217 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:2475 Грунты и основания гидротехнических сооружений

Еще материалы

Общие положения математического моделиро…

Математическим моделированием называют метод изучения физических явлений с помощью моделей, основанный на идентичности математического описания процессов в оригинале и модели. Различают математические модели прямой и непрямой аналогии. Модели прямой аналогии...

19-03-2013 Просмотров:2012 Обследование и испытание сооружений

Кинематика и динамика кривошипно — шату…

Кинематические исследования и динамический расчет кривошипно-шатунного механизма необходимы для выяснения сил, действующих на детали и элементы деталей двигателя, основные параметры которых можно определить расчетом. Рис. 1. Центральный и дезаксиальный кривошипно-шатунные механизмы   Детальные исследования...

25-08-2013 Просмотров:11087 Основы конструирования автотракторных двигателей

Основные дефекты крыш и причины их возни…

Основными недостатками несущих конструкций крыш являются: деревянных — нарушения соединений в сопряжениях стропил, плохая гидроизоляция между каменными и деревянными конструкциями, значительный прогиб стропильных ног, гниение мауэрлата, строительных ног, обрешетки и др.; железобетонных...

31-03-2010 Просмотров:7447 Эксплуатация жилых зданий