Menu

Механізм проявлення гірського тиску

МЕХАНІЗМ ПРОЯВЛЕННЯ ГІРСЬКОГО ТИСКУ.

ПРУЖНИЙ РОЗПОДІЛ НАПРУЖЕНЬ

Розкриття масиву гірських порід свердловиною суттєво змінює їх напружений стан, оскільки тиск у свердловині, як правило, менший за боковий тиск порід. Стінки свердловини тривалий час залишаються незакріпленими і сприймають як змінні навантаження, так і фізико-хімічній дію промивної рідини, що знаходиться у свердловині. Ці фактори негативно впливають на стійкість гірських порід, що складають стінки свердловини, і можуть спричинити до їх значного деформування і навіть обвалювання. Із зростанням глибини свердловини ця проблема постає більш гостро.

Насамперед змалюємо фізичну картину механізму проявлення гірського тиску в масиві порід довкола пробуреної свердловини. Початкові умови можна сформулювати так.

Гірські породи масиву зажди знаходяться в напруженому стані, кількісною мірою якого є гірський тиск. Основним фактором, що формує початкове поле напружень гірського масиву є сила земного тяжіння.

Напружений стан гірських порід пов’язаний з певним запасом потенціальної пружної енергії, кількість якої пропорційна об’єму і глибині залягання порід.

Переходячи з одного напруженого стану в інший, гірські породи або накопичують, або віддають енергію. В другому випадку виконується робота з деформування, тобто переміщення частинок породи в просторі. Ці переміщення можуть відбуватися або лише в межах пружної деформації, тобто коло стану рівноваги, або супроводжуватися незворотними деформаціями.

Гірські породи слід розглядати як квазіпластичний матеріал, тобто приймається, що їх незворотне деформування призводить до порушення суцільності: Утворюються мікро – і макротріщини, розриви; в межах пружних деформацій можуть виникати мікротріщини, які “заліковуються” при знятті навантажень. Робота з переміщення частинок породи в межах впливу свердловини призводить до зменшення потенціальної енергії пласта.

Вихідним для розв’язування більшості задач механіки гірських порід є уявлення про наявність в незайманому гірському масиві простого поля напружень – рівномірного усестороннього стиску. Якщо в процесі геологічного розвитку цей стан з якихось причин порушився, то за тривалий час внаслідок релаксації і квазіпластичного деформування рівноважний стан відновлюється.

Розкриття гірського масиву свердловиною порушує усталений стан ізостазії. Коло свердловини формується локальне негідростатичне силове поле з максимальною концентрацією напружень на її стінці. Перерозподіл раніше існуючих напружень коло гірничої виробки – фундаментальне положення теорії гірського тиску.

Нові напруження сприяють виникненню різко зорієнтованих деформацій. З точки зору порушень цілісності масиву найнебезпечнішими для гірських порід є розтягуючи і зсувні напруження. Якщо несуча здатність порід стає недостатньою, то коло свердловини формується деяка гранична область, де породи отримують увесь спектр квазіпластичних деформацій від в’язкопластичної течії до крихкого руйнування. В результаті утворення мікро – і макротріщин об’єм порід збільшується і вони переміщуються у свердловину. Відбувається розрядка пружної енергії пласта. Межа концентрації напружень може залишатися на стінці свердловини, якщо деформації мають характер повзучості, або пересуватися вглиб масиву, якщо деформації спричинюють руйнування породи.

Процеси перерозподілу напружень розвиваються в часі і відображають різні форми прояву гірського тиску. Ці процеси або закінчуються на стадії утворення нового поля напружень, коли деформації гірських порід залишаються пружними, або супроводжуються непружними, пластичними деформаціями. Непружне квазіпластичне деформування залежно від визначальних факторів спричинює або утворенню каверн (пустот на стінках свердловини), або звуження стовбура свердловини. В окремому випадку рівноважний стан наступить лише тоді, коли в свердловину буде “витиснуто” об’єм породи, рівний різниці об’ємів породи в “граничній” зоні до і після переходу в граничний стан.

В ряді робіт [ , , ,] розглядають різні аспекти напруженого стану гірських порід довкола свердловини.

Пружний розподіл напружень в гірських породах, розкритих свердловиною вперше теоретично було розкрито С.Г. Лехницьким (1938 р.). При розкритті масиву порід свердловиною з її боку має місце розвантаження порід. Для вертикальної свердловини задача осесиметрична відносно осі свердловини і розв’язана в циліндричних координатах. На рис. 12 подано розрахункову схему і умовні позначення довкола вертикальної свердловини.

Зміну напруженого стану порід можна описати такою системою рівнянь:

[image] (62)

[image]; (63)

[image]; (64)

де gр – питома вага рідини у свердловині.

 

На рис. 13 показано розподіл пружних напружень у горизонтальному напрямі від осі свердловини як графіки залежності [image] у відносних координатах.

Як видно з рис. 13 найбільша зміна напруженого стану порід має місце на стінці свердловини і зумовлена різницею між боковим тиском в гірських породах lgz і гідростатичним тиском gрz. Вплив свердловини на напружений стан гірського масиву розповсюджується приблизно на відстань (3–5)rc від її центра.

Кільцеві напруження мають найбільші значення на контурі стовбура і по мірі віддалення від свердловини зменшуються до величини напруження в незайманому масиві.

Радіальні напруження навпаки збільшуються від значень, рівних тиску стовпа бурового розчину на контурі ствола, до початкових в незайманому масиві.

Для оцінки впливу свердловини на напруження в масиві порід введено поняття коефіцієнтів концентрації напружень:

– кільцевих [image]

– радіальних [image].

На відстані приблизно (5–6)rc вказані коефіцієнти стають практично рівними 1.

Із зменшенням гідростатичного тиску в свердловині r на стінці зменшуються радіальні sr і зростають тангенціальні напруження sq . Причому напруження sq гранично можуть перевищувати величину гірського тиску до двох разів (при gр=0 і l=1).

Якщо гірський масив втратив стійкість і утворилася гранична область, напруження розподіляються дещо інакше, як показано на рис 14. Тут І позначено область непружних деформацій, ІІ – область пружного деформування масиву, ІІІ – незайманий гірський масив.

Представлені залежності зміни напруженого стану гірських порід отримано при величині коефіцієнта бокового розпору l=1.

Величина коефіцієнта бокового розпору певним чином впливає на концентрацію напружень по головних напрямках. В породах, які мають менше значення l кільцеві напруження на контурі стовбура будуть більшими. Тому на стінках свердловини, що складені міцнішими породами (пісковики, вапняки, доломіти), слід очікувати більшу концентрацію напружень, чим на стінках, складених слабкішими породами (глинисті, соляні відклади).

Представлені залежності зміни напруженого стану гірських порід отримано при величині коефіцієнта бокового розпору l=1.

Величина коефіцієнта бокового розпору певним чином впливає на концентрацію напружень по головних напрямках. В породах, які мають менше значення l кільцеві напруження на контурі стовбура будуть більшими. Тому на стінках свердловини, що складені міцнішими породами (пісковики, вапняки, доломіти), слід очікувати більшу концентрацію напружень, чим на стінках, складених слабкішими породами (глинисті, соляні відклади).

 

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:4406 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7571 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4515 Грунты и основания гидротехнических сооружений

Еще материалы

Ремонт стен и колонн

Ремонт деревянных стен. Па деревянных стенах при ремонте закрепляют и заменяют нижние венцы или обвязки; устанавливают сжимы на выпучивающиеся участки стен; уплотняют пазы, углы, стыки к...

25-05-2010 Просмотров:11998 Эксплуатация жилых зданий

Глава 6. Основные свойства минералов в …

ГЛАВА 6. ОСНОВНЫЕ СВОЙСТВА МИНЕРАЛОВ  В ОТРАЖЕННОМ СВЕТЕ     К основным свойствам рудных минералов относятся следующие: 1. отражательная способность; 2. анизотропия; 3. двуотражение; 4. цвет; 5. внутренние рефлексы; 6. магнитность; 7. твердость; 8. внутреннее строение; 9. кристаллографические формы; 10. кислотостойкость. Эти свойства являются главными...

03-03-2011 Просмотров:16926 Рудная минераграфия

Расчет подшипника

Исходными данными для расчета подшипника являются полученные при динамическом расчете нагрузки на шатунные и коренные шейки коленчатого вала, а также принятые по конструктивным соображениям значения диаметра и длины опорной поверхности...

25-08-2013 Просмотров:3625 Основы конструирования автотракторных двигателей