Menu

Механические свойства минералов.

6.3.1 Твердость

Твердость минерала является его характерным свойством и помогает его индентификации. Традиционно твердость, которой оперируют минералоги, определяется путем царапания, когда оценивается способность острого края одного минерала оставить след на ровной поверхности другого. Такая проверка основывается на ряде минералов, подобранных в 1824 г. австрийским минералогом Ф. Моосом (1773-1839) и пронумерованных им от 1 до 10 в порядке увеличения твердости. Каждый минерал оставляет царапину на тех минералах, которые имеют меньший номер в этой шкале, но не производит такого воздействия на минералы с большим номером. Эталонами послужили следующие минералы:

Шкала твердости Мооса

1. Тальк 6. Ортоклаз

2. Гипс 7. Кварц

3. Кальцит 8. Топаз

4. Флюорит 9. Корунд

5. Апатит 10. Алмаз

Моос прекрасно сознавал, что интервалы твердости в его шкале неравноценны, но он отмечал, что это не должно приуменьшить ее полезность, и практика подтвердила его точку зрения.

К перечню эталонных минералов можно добавить для удобства следующие полезные при практических определениях средства: ноготь большого пальца, который у большинства людей царапает гипс, но не кальцит, хорошего качества острие перочинного ножа, которое слегка царапает ортоклаз, и обычное оконное стекло, которое может царапаться ортоклазом и легко царапается кварцем.

Для определения твердости необходимо иметь в своем распоряжении обломки минералов указанной шкалы. Каждый обломок можно вмонтировать с помощью эпоксидной смолы в конец короткой металлической трубки, т. е. изготовить набор «карандашей» для определения твердости, которыми удобно пользоваться. Для определения твердости нужно выбрать ровную поверхность, что бывает трудно, так как многие минералы являются хрупкими и края их неровных участков

могут крошиться, что затрудняет точное определение твердости. Когда царапина или другой отпечаток оставлены на ровной поверхности, то видно, что, несмотря на хрупкость, испытуемый минерал поддается пластической деформации под воздействием острого края эталонного минерала. Царапину следует проводить короткими осторожными движениями, чтобы не испортить образец. Когда проверяемый минерал близок по твердости к стандарту, оставленный след необходимо слегка протереть и рассмотреть под лупой, чтобы убедиться, что царапина действительно была сделана.

Соотношение твердости по шкале Мооса с твердостью, полученной методом микровдавливания

Существует стандартный метод определения твердости металлов посредством вдавливания в их поверхность под известной нагрузкой пирамидального алмазного наконечника и последующего измерения поперечника образовавшейся вмятины (см. разд. 7.9.2). Этот метод можно с успехом применить к хрупким минералам, которые испытывают пластическую деформацию под локальной нагрузкой, и использовать для сравнения со шкалой твердости Мооса.

Результаты опытов по проведению царапины на металлах показывают, что твердость оставляющего на их поверхности след наконечника должна быть приблизительно в 1,2 раза больше твердости поверхности. Если это так, то по мере возрастания твердости интервалы между стандартами на шкале Мооса будут систематически возрастать, поскольку в идеале каждый стандарт должен иметь твердость по крайней мере в 1,2 раза большую, чем предыдущий. Если результаты определения твердости входящих в шкалу Мо-оса минералов, полученные методом микровдавливания (MB), сопоставить с числами, которые им присвоил Моос, то будет видно, что интервалы действительно увеличиваются закономерно, за исключением чрезвычайно большого интервала между корундом и алмазом (рис. 6.3). Хотя в значениях твердости, найденных методом MB различными исследователями, наблюдается некоторый разброс, можно говорить о том, что каждый стандартный минерал шкалы Мооса вплоть до корунда (№ 9) в 1,6 раза тверже предыдуще-

Рис. 6.3 Зависимость между шкалой твердости Мооса и результатами, полученными методом микровдавливания (по данным D. Tabor, PIOC. Phys. Soc. 67: 254, 1954).

го. Это свидетельствует о том, что Моос отбирал свои минералы с большой тщательностью и искусством, чтобы получить не равные, а обоснованные интервалы своей шкалы. Исключение составляет алмаз, который по твердости значительно превышает все остальные стандартные минералы.

Твердость, подобно другим физическим свойствам, зависит от анизотропии структуры минералов и варьирует по разным направлениям. Это справедливо даже для кубических минералов. За исключением нескольких случаев (например, у кианита Тв. = 4 : 5 на плоскости (100), параллельной оси ж, 6 -г 7 на плоскости {100}, параллельной оси у, и 7 на плоскости {010}), разница не настолько велика, чтобы ее стоило учитывать. У алмаза, однако, разница в твердости на различных гранях значительна, что и позволяет осуществлять его огранку посредством шлифовки алмазным порошком.

Твердость различных групп минералов

Представляется полезным привести некоторые обобщенные данные о твердости минералов. Дополнительные сведения приведены в Приложении II.

Самородные элементы, не считая ярчайшего исключения, представленного алмазом, обычно являются мягкими. Вместе с тем платина (Тв. = 4 : 4,5) и железо (Тв. = 4,5) достаточно твердые; еще большей твердостью обладает иридосмин (Тв. = 6 : 7). Соединения тяжелых металлов (серебра, меди, свинца, висмута и ртути) являются мягкими (Тв. < 4).

Большинство сульфидов и сульфосолей относительно мягки, хотя у обычного дисульфида железа — пирита — Тв. = 6 : 6,5. Галогениды мягкие.

Карбонаты и сульфаты обычно мягкие. Фосфаты обладают промежуточными значениями твердости (Тв. ~ 5).

Безводные силикаты чаще всего твердые (Тв.= 5,5 : 8), а водные силикаты (слюды, цеолиты) мягче.

Оксиды, как правило, твердые, а гидроксиды, наоборот, относительно мягкие.

6.3.2 Спайность

Наблюдающаяся у многих минералов способность раскалываться по отдельным плоскостям атомов в структуре свидетельствует о том, что вдоль этих плоскостей силы связи оказываются более слабыми, чем вдоль других направлений.

Плоскости спайности всегда обладают высокой плотностью атомов и во всех случаях параллельны возможным граням кристалла. Одновременно они являются кристаллографическими плоскостями и определяются соответствующими индексами Миллера. Спайность выявляют, прослеживая регулярные системы трещин в прозрачных минералах, таких, как флюорит или кальцит, либо ровные отражающие плоскости, образующиеся при раскалывании кристаллов, что наблюдается у полевых шпатов, пироксенов и слюд. Это неизменное и надежное свойство, которое порой оказывается хорошим средством, позволяющим установить симметрию минералов. Следы плоскостей спайности играют важную роль реперных направлений при оптическом изучении ксеноморфных зерен (т. е. не имеющих хорошо выраженных граней) под микроскопом.

В зависимости от легкости, с которой минералы раскалываются по определенным плоскостям, спайность обозначается следующими терминами:

весьма совершенная: крайний случай раскалывания, когда его даже трудно предотвратить — спайность у слюды, параллельная плоскости {001}, или у молибденита вдоль плоскости {0001};

совершенная: раскалывание происходит легко, например у флюорита по {111}, кальцита по {1011}, барита по {110}; средняя: как у ортопироксена вдоль {110}; несовершенная: отмечается у фторапатита и других минералов группы апатита параллельно {0001}.

Другие виды спайности относятся к трудноразличимым.

Отдельностью называют свойство минералов раскалываться по определенным дискретным плоскостям в противоположность спайности, которая проявляется вдоль любой из плоскостей, находящихся на межатомных расстояниях. Отдельность нередко связана с наличием пластинчатых вростков в кристаллах, возникающих в результате экссолюции по определенным кристаллографическим плоскостям в минерале-хозяине. Она наблюдается, например, в некоторых авгитах, которые содержат пластинчатые выделения пижонита или ортопироксена, параллельные {001} (рис. 2.12).

Знание атомной структуры минерала часто позволяет объяснить направление спайности. Это хорошо видно у слюд, где пространственное расположение атомов характеризуется наличием плоскостей, параллельных {001}. Плоскости группируются в сложные слои (см. рис. 11.53), состоящие из соединенных угловыми узлами тетраэдров SiO4, которые в свою очередь связаны вершинами со слоем октаэдров AlO6 (или MgO6, или Fe2+O6), имеющих общие ребра. Последовательно расположенные сложные слои соединяются друг с другом посредством слабых связей с K+, который находится в 12-кратной координации. Таким образом, единственный заряд у K+ делится между 12 окружающими его ионами, и поэтому каждая связь является электростатически ослабленной. Отсюда легко понять наличие у слюд спайности вдоль плоскостей с ионами K+.

Рис 6. 4 Раковистый излом у обсидиана

Спайность пироксенов и амфиболов также непосредственно связана с их структурой, которая содержит цепочки тетраэдров SiO4, расположенные параллельно кристаллографической оси Z Спайность возникает, как это следует из рис 11.31 и 11.41, по плоскостям между цепочками

6.3.3 Излом

Если минерал раскалывается не вдоль плоскости спайности, а по другим направлениям, то поверхность излома может обладать характерными особенностями.

Наиболее распространенную разновидность представляет собой раковистый излом. Исследуемый минерал при ударе раскалывается по вогнутым поверхностям с характерными гребнями, располагающимися приблизительно концентрически вокруг места удара, причем вся поверхность напоминает створку раковины моллюска. Такой излом наблюдается у стекол и наиболее ярко проявляется у вулканического стекла — обсидиана (рис. 6. 4), который является породой, а не минералом. Раковистый излом легко дает скрытокристалличе-ский кварц в виде кремня1, и первобытные люди использовали это его свойство для изготовления орудий труда с острыми режущими краями, которые образуются пересекающимися поверхностями излома. Среди известных минералов раковистый излом наблюдается у кварца и оливина

Из других, менее известных видов излома следует упомянуть ровный, неровный и занозистый Последний термин применяется к поверхностям с небольшими, но острыми и зазубренными неровностями.

6.3.4 Прочность

Под прочностью понимается способность минерала реагировать на удар, раздавливание, разрезание и изгиб

Самородные металлы — медь, серебро и золото — могут быть сплющены легкими ударами MO-

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:3971 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7160 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4141 Грунты и основания гидротехнических сооружений

Еще материалы

Визначення показників механічних властив…

ВИЗНАЧЕННЯ ПОКАЗНИКІВ МЕХАНІЧНИХ ВЛАСТИВОСТЕЙ ГІРСЬКИХ ПОРІД МЕТОДОМ СТАТИЧНОГО ВТИСКУВАННЯ ШТАМПА   Вперше метод втискування для оцінки опору гірських порід руйнуванню при бурінні запропонував Є.Ф. Епштейн. За цією методикою в зразок породи втискувався...

25-09-2011 Просмотров:4726 Механіка гірських порід

Признаки наличия разрывных нарушений

Для установления разрывных нарушений при геологическом картировании и других исследованиях существует ряд признаков, которые можно выявить как прямыми наблюдениями, так и косвенными методами. К выявляемым прямыми наблюдениями признакам, свидетельствующим о наличии...

01-10-2010 Просмотров:8906 Геологическое картирование, структурная геология

Интерпретация морфометрических карт и со…

Наиболее трудным и ответственным этапом морфометрических исследований является геологическая интерпретация данных морфометрии. Для успешного решения этой задачи необходимо установить, какие особенности геологического строения исследуемого района определяют наличие и характер выявленных...

18-08-2010 Просмотров:6668 Морфометрический метод.