Menu

Математическая обработка результатов прямых неравноточных измерений.

Веса измерений. Неравноточными называют измерения, выполненные приборами различной точности, разным числом приемов, в различных условиях.

При неравноточных измерениях точность каждого результата измерений характеризуется своей среднеквадратической погрешностью. Наряду со средней квадратической погрешностью при обработке неравноточных измерений пользуются относительной характеристикой точности – весом измерения. Вес i-го измерения вычисляют по формуле

[image] (5.9)

где с – произвольная постоянная, назначаемая вычислителем, mi – средняя квадратическая погрешность i-го измерения.

Так, имея ряд результатов измерений l1, l2, ..., ln , со средними квадратическими погрешностями m1 , m2 , ..., mn , определяют их веса:

p1 = c / m12 , p2 = c / m22 , ..., pn = c / mn2.

Часто постоянную с для удобства дальнейших вычислений назначают так, чтобы веса pi оказались целыми числами.

Рассмотрим смысл произвольной постоянной с. Предположим, что в результате фиксирования значения с вес j-го измерения стал равен 1, то есть pj = c / mj2 = 1. Отсюда находим c = mj2. Следовательно, постоянная с есть квадрат средней квадратической погрешности m2 такого измерения, вес которого принят за единицу (с = m2).

Теперь (5.9) можем записать так

[image]. (5.10)

Кратко m называют средней квадратической погрешностью единицы веса.

Вес арифметической средины. Рассмотрим вес арифметической средины равноточных измерений. Примем в формуле (5.8) за единицу вес одного измерения, то есть m = m, и запишем [image].

Тогда согласно (5.10) вес Р арифметической средины L будет равен

P = [image] = n. (5.11)

Вывод. Если за единицу веса принят вес одного измерения, то согласно (5.11) вес арифметической средины равен числу измерений.

Следствие. Если результат l измерения имеет вес р, то можем считать, что l является средним арифметическим из р измерений с весом 1.

Общая арифметическая средина результатов неравноточных измерений. Пусть имеем результаты многократных неравноточных измерений одной величины: l1, l2, …, ln, выполненных с весами p1, p2, …, pn.

Представим каждый из результатов li (i = 1, 2, …, n) как среднее из pi результатов с весом 1. Получим такой ряд результатов равноточных измерений:

l1 - результат p1 измерений с весом 1,

l2 - результат p2 измерений с весом 1,

¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼¼

ln - результат pn измерений с весом 1,

где общее число измерений с весом 1 равно p1 + p2 +¼+ pn .

Нами составлен ряд результатов равноточных измерений, позволяющий найти окончательное значение измеряемой величины как среднее арифметическое из всех результатов измерений

[image]. (5.12)

Значение, вычисляемое по формуле (5.12), называют общей арифметической срединой или весовым средним.

Оценки точности результатов неравноточных измерений. Приведем без вывода формулы характеристик точности, используемых при обработке прямых неравноточных измерений.

Средняя квадратическая погрешность m измерения, имеющего вес, равный единице:

- формула Гаусса: [image].[image]

Формула применяется, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины.

- формула Бесселя: [image] ,

где vi - поправки к результатам измерений:

[image] [image] [image].

Средняя квадратическая погрешность общей арифметической средины

[image]

Обработка результатов неравноточных измерений. Математическая обработка ряда результатов прямых неравноточных измерений одной величины выполняется в следующей последовательности.

1. Вычисление весового среднего (общей арифметической средины)

[image].

2. Вычисление поправок к результатам измерений:

[image] (i = 1, 2,…, n).

Контролем правильности вычислений служит равенство

[image]

3. Вычисление средней квадратической погрешности одного измерения по уклонениям от арифметической средины, используя формулу Бесселя для неравноточных измерений:

[image].

4. Вычисление средней квадратической погрешности весового среднего

[image].

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:2427 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:4953 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:2385 Грунты и основания гидротехнических сооружений

Наши рекомендации

Еще материалы

Натурные динамические испытания

Задачи испытаний. Основные динамические характеристики конструкций и сооружений Натурные динамические испытания проводят для особо ответственных объектов в таких случаях: перед сдачей в эксплуатацию путепроводов, мостов и др.; при обнаружении повреждений или...

19-03-2013 Просмотров:3148 Обследование и испытание сооружений

Геодезичні роботи при щитовій проходці

При спорудженні тунелю щитовим способом тунельного оброблення, що складається із чавунних або залізобетонних тюбінгів або блоків, збирається усередині оболонки щита. Тому положення кілець тунельного оброблення в плані й по висоті...

30-05-2011 Просмотров:2905 Інженерна геодезія

Радиальные системы

Сеть Байтового покрытия радиальной системы обладает той особенностью, что все нити ее имеют общий центральный узел. В том случае, когда этот узел каким-либо способом закреплен от горизонтальных смещений, расчет покрытия...

20-09-2011 Просмотров:3853 Вантовые покрытия