Menu

Кристаллографические оси координат и наименования граней.

Измерение двугранных углов кристалла и их изображение на стереограммах позволяют выявлять симметрию кристалла. Когда на стереограмме выполнены необходимые построения, как это сделано в качестве примера на рис. 3.22 для кристалла, изображенного на рис. 3.17 и 3.21, то становится

Рис. 3 23 Вращение стереограммы вокруг оси ДО

двойниковая ось

видно, как другие добавляемые к диаграмме полюса граней будут повторяться на ней для удовлетворения требований симметрии.

На рис. 3.24 в правый нижний квадрант добавлен полюс грани из зоны а'ой'о'а'" стереограммы, представленной на рис. 3.22, и нанесены элементы симметрии с помощью обычных обозначений (квадрат для четверной оси, треугольник — для тройной, эллипс — для двойной). В результате проявления тройной симметрии в точке о исходный полюс грани повторяется при вращении вокруг нее. Если четверная симметрия проявляется в точках а, а" и о, то повторение должно наблюдаться во всех квадрантах стереограммы как в верхней, так и в нижней полусферах.

Свойство симметрии воздействовать на точку, воспроизводя ее много раз по «командам» элементов симметрии, оказывается весьма полезным. Оно является основой, на которой были выведены 32 класса симметрии (см. рис. 3.37). Когда OT-

Рис. 3.24 Стереограмма граней простой формы {211}. Нижние грани обозначены только в правом нижнем квадранте.

дельный полюс наносится на стереограмму кристалла с данным набором элементов симметрии, представленных осями, зеркальными плоскостями и центром (если он присутствует), то они воспроизводят другие полюса, что приводит к созданию граней, которые совместно образуют форму кристалла (рис. 3.24).

На следующем этапе описания морфологии кристалла необходимо дать обозначения различным имеющимся у кристалла граням, сгруппированным в связанные ряды или формы. Для этого следует установить систему координат, которая позволит определять отдельные грани. Оси координат называются кристаллографическими координатными осями (или просто кристаллографическими осями) и выбираются в соответствии с принятыми условиями таким образом, что совпадают с основными осями симметрии и (или) преобладающими направлениями ребер (осей зоны) в кристалле. Обычно эти координатные оси параллельны ребрам элементарной ячейки и имеют с ними одинаковые относительные длины. Важно уяснить, что оси симметрии реальны и их наличие в кристалле может быть установлено вне зависимости от систем номенклатуры граней каждым, кто знает, что такое симметрия. С другой стороны, кристаллографические оси образуют систему координат, выбранную с учетом определенных условий с целью идентификации или спецификации отдельных граней. В некоторых случаях (гексаго-нальнаая и тригональная сингонии) имеются две различные системы координат.

Обычно используемые кристаллографические оси для семи сингонии приведены в табл. 3.3. В ней графически показаны положения, в которых находился кристалл (или его модель) при его описании, и в каждом случае буквами обозначены направления кристаллографических осей — положительные и отрицательные. Отметим, что в моноклинной сингонии ось +x направлена к наблюдателю, в то время как в гексагональной и триго-нальной сингониях линия наблюдения делит пополам угол между осями +x и -u.

Две сингонии, моноклинная и триклинная, не являются ортогональными, т.е. не все их оси образуют между собой прямые или другие фиксированные углы. Следовательно, при их описа-лии должны быть установлены углы между осями х и z в моноклинной сингонии и углы между всеми тремя осями в триклинной. На рисунках табл. 3.3 эти углы обозначены греческими буквами. В гексагональной и тригональной системах углы между горизонтальными осями всегда равны 120° и поэтому их величины не требуется указывать.

Любая грань кристалла, если ее представить как безгранично простирающуюся плоскость, будет пересекать одну или несколько координатных осей, и углы, определяющие ее положение, задаются отрезками, которые она отсекает на этих осях от начала координат. При описании кристаллической решетки и закона постоянства двугранных углов было показано (разд. 3.2.1), что грани кристалла представляют собой плоскости с достаточно высокой плотностью узлов решетки и что закон рациональности отношений параметров определяет такие соотношения между их углами, которые задаются простым отношением длин, соответствующих ребрам элементарной ячейки.

3.5.1 Осевые отношения

Выбор элементарной ячейки определяет единицу измерения координатных осей, а также устанавливает осевые отношения, которые являются характерными параметрами каждого кристаллического вещества. Единицы измерения в направлениях x, y и z обозначаются a, b и c соответственно. Мы видели, что в своей основе осевое отношение а : b : с выражает относительные размеры ребер элементарной ячейки. На заре кристаллографии осевое отношение определялось путем измерения углов между гранями. На основе полученных при этом результатов были сделаны лучшие для того времени описания фундаментальных констант кристаллических структур. В настоящее время с помощью дифракционных методов (см. гл. 4) можно измерить длины сторон ячейки в абсолютных единицах и таким путем проверить их отношения, определенные кристаллографами в более раннее время по замеру наклона граней. На основе осевых отношений устанавливается положение единичной грани, позволяющее определять единицу измерения, которая кратна длине ребра истинной ячейки в одном направлении. Но помимо этого осевые отношения позволяют получить описание граней кристалла. Это оказывается возможным благода-

Таблица 3.3 Кристаллографические (координатные) оси для семи сингоний

Принятые Расположение и

координатные относительная

оси длина

ря тому, что все отрезки, отсекаемые гранями кристалла на осях, являются относительными и, если потребуется, могут быть легко выражены в размерах ребер элементарной ячейки, когда они определены рентгеновским методом. Расчет осевых отношений по значениям углов между гранями показан на рис. 3.30.

3.5.2 Миллеровские символы граней кристаллов

Миллеровская1 система индексов обеспечивает простой принцип обозначения для описания наклонов граней кристалла на основе измерения единиц длины. Сначала записывают длину отсекаемых гранью отрезков в значениях единиц измерения a, b и c. На рис. 3.25 для параметрической плоскости, очерченной жирной линией, они будут равны

1a 1b 1c,

а для других показанных плоскостей

1/2a 1/3b 1c 4/3a 2b 1c

Поскольку отрезки всегда записываются в порядке а, 6, с, то сами эти буквы можно опускать. Затем берем обратные величины длины отсекаемых отрезков и преобразуем их до целых чисел. Получаем

Три индекса Миллера, взятые вместе, составляют миллеровский символ грани и определяют ее относительный наклон.

Отрезки

Обратные

Миллеровские

величины

индексы

111

1/1 1/1 1/1

111

1/2 1/3 1

2/1 3/1 1/1

231

4/32 1

3/4 1/2 1/1

324

Если какой-либо отрезок находится на отрицательном конце оси, то он обозначается черточкой над цифрой индекса, например 321, и произносится: три, два с чертой, один. Если в индексах появляется двузначное число, то числа разделяются точками, например: 11.1.6.

Грани, параллельные оси, пересекаются с ней в бесконечности. Поэтому, к примеру, для куба (рис. 3.32) имеем

 

Обратные

Миллеровские

Отрезки

величины

индексы

1,оо,оо

1/1,1/оо,1/оо

100

На рис. 3.26 показана часть семейства плоскостей с отрезками 1/2a, 1/3b, 1с и миллеровским символом 231. Плоскости с таким наклоном были построены с использованием в качестве исходных точек последовательного ряда узлов решетки. (На рисунке показаны узлы, которые в кристаллографически параллельных плоскостях являются эквивалентными и имеют один и тот же символ.) Заметим, что последовательные плоскости разделяют длины a, b и с на ряд частей, равных цифре индекса для этой оси. Другой способ определения индексов состоит в следующем. Если отрезки всегда выражаются как дробные части единицы измерения с числителем, равным 1, то знаменатели непосредственно представляют собой индексы Сказанное позволяет сформулировать общее правило:

Если семейство плоскостей рассекает стороны ячейки a, b и с на части h, k и l соответственно, то образующиеся отрезки будут a/h, b/k и с/l, а индексы hkl.

В кристаллографии символ hkI широко используется для обозначения «любой плоскости» в общем смысле.

Говоря о числах миллеровских индексов, следует отметить четыре момента.

1. Поскольку параллельные плоскости эквивалентны друг другу, цифры в символе всегда сокращаются до их наименьших значений. Например, в описании внешней морфологии кристаллов символ 022 не встречается, будучи эквивалентным 011. Однако при изучении структуры кристаллов дифракционными методами символ 022 и подобные ему имеют смысл. Как видно из рис. 3.27, может существовать семейство плоскостей, которые следует обозначать именно так. Они, хотя и па-

Рис. 3.27 Различие в пространственном расположении плоскостей, обозначенных 011 и 022.

раллельны 011, имеют меньшее межплоскостное расстояние d, чем семейство 011. Поэтому характеристика конкретного семейства плоскостей, которая теряется в случае изучения только углов между гранями, становится значимой, когда рентгеновскими методами измеряются межплоскостные расстояния.

2. Благодаря введению обратных величин при определении миллеровских индексов, относительно большая цифра индекса обозначает сравнительно небольшой отрезок на оси, к которой он относится. Отсюда следует правило — чем больше число, тем меньше отрезок.

3. Система обозначений. Символ 110 обозначает ряд плоскостей данного наклона (и пространственного расположения). Символ (110) строго соответствует обозначению единичной грани, правда скобки часто опускают. Символом {110} обозначают все грани какой-либо одной формы (разд. 3.6.1).

4. В гексагональной и тригональной сингони-ях имеется четыре (а не три) кристаллографические оси, а потому миллеровский индекс в этих системах состоит не из трех, а из четырех цифр. Добавочные индексы обозначают символом г (в целом hkil). Однако из-за особенностей взаимоотношений между осями ж, у и и в плоскости, перпендикулярной тройной или шестерной оси, индексы hki всегда подчиняются уравнению h + k = -i. Поэтому индекс г часто опускают и заменяют точкой (hk.l).

3.5.3 Символ зоны

Определенные соотношения существуют между миллеровскими символами граней и символами для осей зоны. Зоной называется совокупность граней с параллельными ребрами, а общее направление ребер именуют осью зоны (рис. 3.28). Ось зоны можно обозначить координатами U, V, W, которые представляют собой множители при отрезках ячейки, отсекаемых на кристаллографических осях координат. На рис. 3.28 жирной линией показана ось зоны, параллельная направлению ребра qr, по которому пересекаются грани pqr и qrs. Символ зоны [ UVW] заключен в квадратные скобки, чтобы показать, что он относится к линии, а не к плоскости. Рассмотрение подобных взаимоотношений не входит в задачи данной книги, но их описание можно найти в работах по кристаллографии (см. рекомендации для дальнейшего чтения в конце главы). Здесь же мы удовлетворимся упоминанием только двух из них.

1. Правило сложения (частный случай закона зоны Вейса) утверждает, что если сложить индексы двух граней одной зоны, то они всегда сведутся к индексам грани, лежащей между ними и являющейся наклонной к находящемуся между ними ребру. Данное правило зачастую позволяет при внимательном просмотре индексировать грани на сте-реограмме, когда основным граням индексы уже присвоены. Это оказывается особенно полезным, если грань, которую нужно индексировать, лежит на пересечении двух зон. Подобные примеры можно видеть на рис. 3.29.

+*

Рис. 3.28 Символ зоны.

2. Чтобы проверить, лежит ли третья грань в одной зоне с двумя другими, мы находим символ зоны двух граней, определяя зону таким способом: пишем индексы каждой грани два раза, располагая индексы второй грани под индексами первой; затем отсекаем конечные члены каждого ряда следующим образом:

В каждой группе, связанной крестом, перемножаем числа, соединенные жирной линией, и вычитаем из полученного результата произведения пар, соединенных тонкими линиями, производя эту операцию слева направо. В итоге получаем символ зоны

Сделайте то же самое с индексами одной из этих двух граней и индексами третьей грани. Если третья грань находится в одной зоне с этими двумя, то символ зоны должен быть тем же, что прежде.

Например, из рис. 3.46 следует, что грань 5161 находится в одной зоне с 0111 и 1121. При этом в

Рис. 3.29 Стереограмма, иллюстрирующая правило сложения для индексов одной и той же зоны.

гексагональной и тригональнои системах мы опускаем третью цифру в описании индекса, так как она не нужна для описания плоскостей. Тогда имеем

В каждом случае символ зоны одинаков, и, следовательно, эти три грани лежат в одной зоне.

3.5.4 Расчет осевых отношений

Обратимся к рис. 3.15, на котором в демонстрационных целях была приведена кристаллическая решетка с заданными нами размерами ячейки, и нанесем полюса ее основных граней на стереограмму для установления симметрии решетки. Результат такой операции показан на рис. 3.29.

В ромбической системе в качестве кристаллографических осей берутся двойные оси симметрии. Они определяют только одну плоскость, которая пересекает оси x, у и z и поэтому принимается за единичную грань1 с обозначением 111. Грани, перпендикулярные к трем двойным осям, получают обозначения 100, 010 и 001.

Все грани в зоне между 001 и 100 будут перпендикулярны к плоскости xz и параллельны у, поэтому их второй индекс 0. Аналогичным образом все полюса на плоскости уz имеют в индексе О на первом месте, тогда как грани основного круга, будучи параллельны z, содержат 0 на последнем месте. Плоскости, представленные полюсами, расположенными в зоне 001-111, будут иметь такие же отношения отрезков, отсекаемых на осях x и у, как и единичная грань, и, следовательно, обладать индексами, у которых первые два числа одинаковы, например 110, 221 и т.д.

В зоне 100, 111, 111, 100 грань, пересекающая ребро между 111 и 111, будет иметь индексы, которые представляют собой сумму индексов этих двух граней, т.е. 022 = 011.

Когда индексирование достигло этой стадии, мы можем рассчитать отношения осей кристалла с помощью методов прямолинейной тригонометрии, используя углы между плоскостями, перпендикулярными кристаллографическим осям (плоскости с индексами 100, 010 или 001), и между теми плоскостями, которые пересекают две оси и параллельны третьей (101, 011, 110). Если искомая плоскость не выражена гранью кристалла, то ее положение может быть определено по стереограм-ме путем построения больших кругов, отображающих две зоны, в которых она может находиться. Точка пересечения этих кругов устанавливает место нахождения искомого полюса. Теперь по стереограмме можно измерить (приблизительно) угол между плоскостями.

На рис. 3.30 показаны тригонометрические соотношения, использованные при расчете осевых отношений для нескольких кристаллографических систем (исключая триклинную). Осевые отношения в триклинной системе лучше всего рассчитывать векторными методами, так как использование тригонометрического подхода для нее оказывается сложным. Подобные расчеты на сте-реограмме рис. 3.29 для кристаллов ромбической симметрии приведут нас снова к осевому отношению

a: b: с = 0,75: 1 : 1,5,

исходя из которого были первоначально получены углы между гранями на рис. 3.15 и в сопровождающей его табл. 3.2.

Осевые отношения можно также вычислить путем решения сферических треугольников в стереографической проекции. Мы не будем здесь касаться этого метода, так как с помощью современных компьютеров такие расчеты легче выполняются векторными методами. Для освоения сферической тригонометрии мы отошлем читателя к старым кристаллографическим руководствам, например к книге F. С. Phillips, An introduction to crystallography, 4th ed., London, Longman, 1977.

Рис. 3.30 Расчет осевых отношений.

Гексагональная и тригонапьная системы или с/а = tg 0001 л 1121/2

Рис. 3.30 Продолжение

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:4223 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7423 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4412 Грунты и основания гидротехнических сооружений

Еще материалы

Шляхи зменшення втрат видобутку нафти і …

Аналiз показує, що 80 – 90% недобору нафти i газу пов`язано з проведенням ремонтiв. Тому з метою зменшення поточних втрат видобутку нафти i газу (чи закачування витiснювального агента) по свердловинах...

19-09-2011 Просмотров:4928 Підземний ремонт свердловин

Санитарно-технические требования и нормы…

Расчетные параметры воздуха и кратность воздухообмена в помещениях должны соответствовать данным табл. 2. Внутренний объем помещений кухонь, оборудованных газовыми плитами, должен быть не менее 8 м3 с плитой на две...

13-02-2010 Просмотров:17436 Эксплуатация жилых зданий

Линейные измерения. Приборы для линейных…

Измерение сторон в ходах постоянного съемочного обоснования может осуществляться лентами, рулетками, дальпомерными насадками, длиномерами, паралактическим, короткобазисным и створно-короткобазисным способами и светодальномерами. 4.2. ПОЛЕВЫЕ КОМПАРАТОРЫ Для определения действительной длины мерного прибора можно пользоваться...

12-08-2010 Просмотров:11569 Постоянное планово-высотное съемочное обоснование