Menu

Кодовые и фазовые измерения.

Кодовые измерения. В приемнике спутниковых сигналов, как и на спутнике, есть датчик частоты и времени, в нем также вырабатываются частоты L1 и L2 (в одночастотном приемнике - только L1). Частота L1 модулируется копиями кодов С/А и Р, частота L2 - только кодом Р.

Интервал времени между появлением на приемнике собственного кода и аналогичного кода, пришедшего от спутника, измеряют.

Если бы часы приемника были точно синхронизированы с часами спутника, то формирование кодов на спутнике и в приемнике происходило бы одновременно. В этом случае измеренный интервал времени между появлениями на приемнике собственного кода и кода, пришедшего от спутника, был бы равен времени прохождения сигнала от спутника до приемника, что позволило бы вычислить расстояние до спутника. Однако показания часов спутника и приемника расходятся на некоторую величину, равную δs – δp, где δs – ошибка часов спутника, δp – ошибка часов приемника. Поэтому измеренное расстояние R существенно отличается от верного и носит название – псевдорасстояние.

Допустим, что ионо- и тропосферная задержки сигнала учтены путем введения соответствующих поправок. Тогда измеренное псевдорасстояние [image] от пункта p до спутника s в эпоху (момент времени) t может быть представлено уравнением

[image][image],

где Xs(t), Ys(t), Zs(t) – координаты спутника в эпоху t; Xp, Yp, Zp – определяемые координаты приемника; c – скорость света.

Информация о часах спутника передается в составе навигационного сообщения, что дает возможность вычислить ошибку часов спутника на эпоху t и учесть ее.

Таким образом, для псевдорасстояния [image] имеем уравнение

[image]. (10.1)

Неизвестными величинами здесь являются Xp, Yp, Zp, δp(t). Для определения четырех неизвестных необходимо иметь не менее четырех уравнений, то есть в одну эпоху необходимо измерить псевдорасстояния не менее, чем до четырех спутников.

Координаты определяются по результатам кодовых измерений с точностью около 3 м.

Для повышения точности пользуются дифференциальным методом. На контрольном пункте с известными координатами устанавливают приемник спутниковых сигналов и, определив его координаты по спутникам, вычисляют расстояния до спутников. Сравнив эти расстояния с вычисленными по известным координатам, определяют поправки и по радио сообщают их потребителям. Поправками исправляют псевдорасстояния, измеряемые потребителями, при этом ошибки определения места относительно контрольного пункта не превышают 1 м.

Кодовые измерения применяются при решении задач навигации. В геодезических работах кодовые измерения играют вспомогательную роль – служат для определения приближенных координат пунктов сети.

Фазовые измерения. Точные геодезические измерения выполняют на несущих частотах L1 и L2 (в одночастотных приемниках – только на частоте L1). При этом измеряют разности фаз между колебаниями, принятыми от спутника, и колебаниями такой же частоты, выработанными в приемнике.

Обозначим:

[image] – фазу частоты [image], поступившей на приемник в эпоху t от спутника s;

[image] – фазу собственной такой же частоты приемника в ту же эпоху.

Для указанных фаз справедливы уравнения:

[image]

Здесь r – расстояние от спутника до приемника;

с – скорость света;

[image] – время, затраченное на путь сигнала от спутника до приемника;

[image] – ошибка часов спутника;

[image] – ошибка часов приемника.

Вычитая из первого фазового уравнения второе, получаем фазовое уравнение измеряемой разности фаз [image]:

[image].

Перепишем его так:

[image].

Умножим уравнение на длину волны [image] и учтем, что [image], где T – период колебаний. Получим

[image]. (10.2)

Представим разность фаз [image] виде суммы двух частей:

[image], (10.3)

где N – целое число периодов, а F – дробь.

Подставляя выражение (10.3) в (10.2), напишем:

[image]. (10.4)

Расстояние между спутником и приемником непрерывно изменяется, отчего изменяется и сдвиг по фазе [image]+ F.

В приемнике спутниковых сигналов предусмотрено измерение непрерывно изменяющейся разности фаз F и подсчет числа переходов ее через нуль, изменяющих целое число волн в расстоянии. Это число прибавляется к измеряемой величине F, отчего суммарный сдвиг по фазе оказывается неправильной дробью, а неизвестное число N остается постоянным для всех расстояний от пункта p до спутника s. Определение целого числа N называется разрешением его неоднозначности.

Учитывая изложенное, напишем уравнение измеренного сдвига по фазе сигнала, принятого от спутника s на пункте p в эпоху t:

[image], (10.5)

где [image];

[image] – частота излучения.

Для ns спутников, nt эпох и одной точки p число измерений, а значит, и число уравнений (10.5) будет равно nsnt.[image]Неизвестными в такой системе уравнений являются три координаты приемника (Xp, Yp, Zp), а также ns чисел неоднозначности и nt смещений часов приемника.

Разности фаз измеряют с высокой точностью, соответствующей долям миллиметра. Однако вычислить решением системы уравнений (10.5), составленных по результатам фазовых измерений, координаты приемника с указанной точностью не удается из-за ошибок орбиты, влияния ионосферы и других причин.

Точность фазовых измерений реализуют, применяя метод относительного определения положения пунктов. Результаты одновременных наблюдений одного и того же спутника в двух пунктах содержат значительные, но общие, близкие по величине погрешности. Поэтому разности результатов измерений от них практически свободны и позволяют с высокой точностью определять разности координат X, Y, Z двух пунктов, то есть трехмерный вектор DX, DY, DZ, их соединяющий. Следовательно, зная координаты X, Y, Z одного пункта, можем, определив разности координат DX, DY, DZ до другого, вычислить и его координаты.

Фазовые измерения в геодезических работах являются основными, обеспечивая возможность построения геодезических сетей высокой точности.

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:2837 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:5741 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:2920 Грунты и основания гидротехнических сооружений

Еще материалы

Газонасыщенность и кинетика выделения га…

При масс-спектрометрическом мониторинге газовыделения идентифицировались следующие соединения: H2, He, N2, H2O, CO, CH4, CO2. Определялась скорость газовыделения в режиме непрерывного нагрева образцов в вакууме. Характерной особенностью процесса дегазации на исходных...

15-11-2010 Просмотров:3994 Сейсмический процесс

Геодезична будівельна сітка

Будівельна сітка створюється в основному на промислових майданчиках й є основою для розбивочних робіт, монтажу технологічного устаткування й виробництва виконавчих зйомок. Характерною рисою будівельної сітки як інженерно-геодезичної мережі є розташування пунктів...

30-05-2011 Просмотров:7652 Інженерна геодезія

Применение ЭВМ и САПР при проектировании…

Повышение качества и снижение сроков проектирования реконструкции объектов является одним из важнейших факторов ускорения научно-технического прогресса. В процессе проектирования требуется учитывать большое количество конструктивно-планировочных, технических, социологических ...

31-07-2009 Просмотров:10987 Реконструкция промышленных предприятий.