Menu

Геологические процессы в грунтах

В механике грунтов под реологическими понимают процессы деформирования скелета грунта, протекающие во времени. Развитие во времени объемных деформаций в водонасыщенных грунтах в значительной мере определяется процессом отжатия или всасывания воды при изменении объема их пор. Развитие таких деформаций грунтов, определяемых только длительностью фильтрации воды, не относят к категории реологических. К чисто реологическим следует относить только протекающие во времени деформации самого скелета грунта в условиях практического отсутствия сопротивления воды или газа изменению объема пор грунта. В глинистых грунтах реологические процессы обусловлены вязкими связями между частицами скелета грунта.

Основные явления, определяющие реологические свойства грунтов: ползучесть грунта, релаксация и длительная прочность. Под ползучестью понимают деформируемость скелета грунта во времени при постоянной нагрузке. Релаксацией называют процесс расслабления (уменьшения) напряжений в грунтах при заданной неизменной деформации. Длительная прочность — прочность грунтов при длительном действии на них нагрузки.

Ползучесть грунтов при сжатии. В условиях компрессионного сжатия какой-либо постоянной нагрузкой о достаточно тонкого образца трехфазного относительно плотного глинистого грунта поровое давление мало и при этом проявляются свойства ползучести его скелета (рис. 1.45). Быстро протекающую часть деформации относят к мгновенной (^ » 0), а остальную — к деформации ползучести. Причем деформации ползучести в условиях компрессионного или всестороннего сжатия всегда затухающие во времени.

Как показали многочисленные эксперименты, в частности С. Р. Мес- чяна, кривые ползучести большинства грунтов удовлетворительно описываются уравнением

е (0 = е0 — а0о — ахо [1 + ехр (— 7^)], (1.38)

[image]

 

где второй член отвечает мгновенному изменению коэффициента пористости, а третий — изменению коэффициента пористости во времени, т. е. собственно ползучести грунта. Коэффициент а0 можно назвать коэффициентом мгновенного уплотнения, а аг и ^ являются параметрами ползучести. Опытами также подтверждено подобие кривых ползучести грунта при разных постоянных напряжениях а (рис. 1.45), что и заложено в уравнение (1.38).

 

Рис. 1.45. Кривые компрессионного сжатия (а) и ползучести (б) при «мгновенной» деформируемости и к моменту Ь' условной стабилизации деформаций

Чем меньше величина тем медленнее развиваются деформации ползучести. При вся

деформация становится мгновенной и уравнение (1.38), учитывая, что при этом а = а0 + аъ превращается в уравнение (1.27) спрямленной компрессионной кривой (рис. 1.45). Возможность использования уравнения (1.38) определяет применимость к грунтам теории линейной ^наследственной ползучести (см. § 8.5).

Широкие экспериментальные исследования ползучести грунтов с испытанием некоторых образцов более десятка лет проводились С. Р. Месчяном. Развитие реологии грунтов во многом обязано работам С. С. Вялова, Н. Н. Маслова, М. Н. Гольдштейна, Г. И. Тер- Степаняна, Ю. К. Зарецкого, А. Я. Будина и др.

Все грунты обладают свойством ползучести, но наиболее ярко они проявляются в глинистых грунтах. В результате этого у сооружений, возводимых на таких грунтах, наблюдаются осадки, продолжающиеся десятками лет. Менее существенны деформации ползучести в песчаных грунтах, но плотины из каменной наброски деформируются годами. Природа ползучести в таких грунтах иная, хотя внешние проявления одинаковы — длительная деформация во времени. В крупнообломочных остроугольных грунтах разрушаются контакты, срезаются углы наиболее напряженных частиц, в результате происходит перестройка структуры и возникают большие напряжения в других частицах, затем их излом и т. д.

Характеристики ползучести аъ У] определяются из результатов специальных длительных компрессионных испытаний грунтов с обязательным контролем порового давления.

Ползучесть грунтов при сдвиге. Развитие сдвиговых деформаций ползучести можно исследовать на сдвиговых приборах при постоянных горизонтальных нагрузках, меньших предельных. Для этого больше подходят приборы кольцевого сдвига (см. рис. 1.19, а), позволяющие осуществлять неограниченные смещения без изменения площади образца в зоне фиксированной поверхности сдвига.

Развитие деформаций сдвига в зависимости от приложенных ка
сательных напряжений имеет характер, приведенный на рис. 1.46. На них можно выделить участок мгновенной деформации (ОА), затем обязательный период уменьшения скорости развития деформации, т. е. стадию неустановившейся — затухающей ползучести [АВ). При малых касательных напряжениях т вся кривая ползучести является затухающей, а при их увеличении т' стадия затухающей ползучести переходит к развитию деформаций с постоянной скоростью, т. е. в

 

[image]

Рис. 1.46. Развитие горизонтальных смещений 5Х в зависимости от величины постоянных касательных напряжений т в сдвиговых приборах

 

Рис. 1.47. Кривая длительной прочности

 

стадию установившейся ползучести (ВС). Установившаяся ползучесть может привести к началу ускоренного деформирования (стадия прогрессирующего течения) и разрушению образца (при %" и на рис. 1.46). Такой характер ползучести глинистого грунта при сдвиге объясняется перестройкой структуры грунта с разрушением существующих и образованием новых структурных связей, а также образованием микротрещин (дефектов), с последующим частичным их закрытием, или, наоборот, развитием (М. Н. Гольдштейн, С. С. Вялов, Ю. К. Зарецкий, С. С. Бабицкая, А. Я- Туровская и др.).

На стадии неустановившейся затухающей ползучести разрушаются хрупкие связи, но закрываются некоторые микротрещины и в результате последующего сближения частиц возникает большое число новых вязких водно-коллоидных связей, и скорость нарастания деформации сдвига уменьшается. В период установившейся ползу- '.ести продолжающие разрушаться хрупкие и вязкие связи полностью компенсируются образующимися новыми водно-коллоидными и молекулярными связями, но одновременно происходит перестройка структуры грунта. Например, чешуйчатые глинистые частицы, до деформации грунта располагавшиеся поперек плоскости сдвига, начинают все больше укладываться своими плоскостями параллельно направлению сдвига. Такая структура грунта меньше сопротивляется внешним усилиям и поэтому развивается стадия прогрессирующего течения, переходящая в разрушение.

Чем больше т, тем за более короткий период установившаяся ползучесть грунта переходит в стадию прогрессирующего течения и раз
рушения (рис. 1.46, случай т" и г'"). Проводя опыты с все меньшими нагрузками, можно достигнуть такого т, при котором в условиях даже очень длительного испытания не наблюдается перехода к разрушению.

В результате испытаний грунта можно построить график длительной прочности (рис. 1.47). На нем длительная прочность соответствует напряжению, при котором разрушение материала произойдет к заданному моменту I. Длительная прочность с течением времени снижается. Прочность при бесконечно большой продолжительности действия нагрузки называют пределом длительной прочности (т,:Х1 на рис. 1.47). Наибольшая прочность отвечает моменту I = 0 и может быть условно названа мгновенной прочностью. Прочность (рис. 1.47), получаемую при обычных относительно кратковременных лабораторных исследованиях грунта, обычно называют стандартной тс.

Явления релаксации напряжений. Имеют ту же природу, что и описанные выше явления ползучести. Если задать грунту быстрым загружением ст некоторую деформацию и закрепить его в этом состоянии так, чтобы деформация не менялась — сохранялась постоянной, то с течением времени в грунте уменьшаются напряжения. В результате получается кривая уменьшения напряжений во времени (рис. 1.48) обычно с сохраняющейся частью напряжений даже в течение очень длительного времени ст<х>- Процесс уменьшения напряжений определяется внутренней медленной перестройкой структуры грунта с преодолением прочности хрупких и вязких связей между частицами и созданием новых. Учитывая единую природу реологических механических свойств грунтов, имеются предложения по данным испытаний на релаксацию оценивать ползучесть и длительную прочность грунтов (С. С. Вялов, Н. А. Цытович и др.).

Установившаяся, незатухающая ползучесть грунтов при сдвиге ярко проявляется в природе. Имеются многочисленные примеры медленного, но постоянного движения пологих склонов, сложенных глинистыми грунтами. Так, некоторые участки откосов Волго-Балтий- ского канала ежегодно смещаются на 0,5... 1 м, и в канале приходится проводить систематические дноуглубительные работы. Портовые набережные на Черном море при скорости смещения около 1 см в год сместились в сторону моря за 70... 100 лет на 50...80 см. Следует подчеркнуть, что эти откосы и набережные исходя из критерия стандартной прочности являются устойчивыми, причем со значительными запасами.

Методы проектирования и строительства подпорных или откосных сооружений в грунтах с ярко выраженными свойствами ползучести при сдвиге могут быть направлены по двум путям. Первый — не допускать возникновения ощутимых деформаций ползучести, что требует очень большого уположения откосов и создания тяжелых или глубоко заложенных подпорных сооружений. Второй путь, развиваемый в последние годы (А. Я- Будин), — это проектирование сравнительно легких сооружений в предположении развития деформаций ползучести исходя из допустимых смещений в течение заданного срока существования сооружения или, например, для портовых соору
жений заданного срока межремонтного периода. Этот путь, как~шра- вило, оказывается экономически более оправданным.

Для некоторых глин предел длительной прочности снижается до 30% стандартной прочности. Учет при проектировании длительной прочности грунта и в особенности предела длительной прочности по сравнению со стандартной приводит к необходимости создания более дорогих материалоемких сооружений. Поэтому следует обязательно учитывать, что при возведении сооружений одновременно происходят два противоположно направленных процесса. Грунт под возникшей новой нагрузкой со временем уплотняется, т. е. упрочняется, а в случае развития деформации установившейся ползучести одновременно стремится разупрочниться. В большинстве случаев процесс упрочнения оказывается определяющим. Особенно ярко прояв- лются процессы уплотнения — упрочнения в слабых грунтах. Кроме того, при обоснованном учете длительной прочности благодаря уточнению расчетных характеристик и процессов необходимо переходить на сниженные коэффициенты запаса устойчивости сооружений (см. § 7.2).

Оставьте свой комментарий

Оставить комментарий от имени гостя

0
  • Комментарии не найдены

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:3422 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:6484 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:3564 Грунты и основания гидротехнических сооружений

Еще материалы

Система забезпечення геометричних параме…

Одним з найважливіших показників якості будівельної продукції служить точність зведення будинків і споруд, що характеризує ступінь наближення дійсних геометричних параметрів об'єкта до заданого в проекті. До геометричних параметрів відносять основні...

30-05-2011 Просмотров:5910 Інженерна геодезія

Водні рідини глушіння з твердою фазою

До рідин глушіння на водній основі з твердими частинками відносяться глинисті розчини невисокої густини та обважнені (з додаванням обважнювачів), розчини мінеральних солей з додатками твердих частинок – кольматантів та обважнювачів...

19-09-2011 Просмотров:3968 Підземний ремонт свердловин

Фильтрационные силы и фильтрационные нап…

Фильтрационная и тормозящая силы. Движение воды в порах возникает в результате наличия различной величины напоров в разных точках грунта. В случае установившегося движения линии тока совпадают с осредненнымн траекториями движения...

25-08-2013 Просмотров:3341 Грунты и основания гидротехнических сооружений