Menu

Элементарная ячейка. Кристаллические решетки.

Ограничивающие кристалл плоскости, или грани, имеют вполне определенное отношение к его структуре, организующей атомы в единую систему. Внутренняя структурная решетка состоит из ячеек, каждая из которых представляет собой группу связанных друг с другом атомов (или ионов), расположенных в пространстве строго фик-

Рис. 3.1 (а) Призматический турмалин (б) Таблитчатый барит (в) Изометрический гранат.

Рис. 3.2 Кристаллы кальцита (а) скаленоэдрический, (б) уплощенный ромбоэдрический, (в) призматиче-

глава з КРИСТАЛЛОГРАФИЯ (описание кристаллов)

сированно. Эти мельчайшие ячейки, повторяясь в трех измерениях, образуют кристалл. Они называются элементарными ячейками структуры.

Представление об элементарной ячейке легче всего проиллюстрировать на примере двумерного рисунка, скажем такого, какой могут иметь обои. На рис. 3.3 приведен пример двумерной решетки, несколько возможных элементарных ячеек которой обведены жирной линией.

3.1.2 Кристаллические решетки

Вершины ячеек представляют собой точки с идентичным окружением в любом заданном направлении. Конечно, без труда можно выбрать разные вершинные точки (например, на рис. 3.3: abdc, efhg, kjlm и т.д.), но чтобы удовлетворить требования, предъявляемые к элементарной ячейке, они должны иметь идентичное окружение по одинаковым направлениям. Такое пространственное расположение точек называется кристаллической решеткой. Двумерную решетку иногда называют плоской, чтобы отличить ее от трехмерной.

Если мы хотим определить структурную решетку кристалла, то для этого нужно прежде всего установить размеры (длины ребер) и углы между ребрами в выбранной элементарной ячейке. Обычно это наименьшая из ячеек, которую удается выбрать при условии согласия с проявляемой кристаллом полной симметрией. Длины ребер и углы между ними называются параметрами решетки. Помимо этого мы должны установить состав элементарной ячейки с точки зрения атомов или групп атомов химических элементов, слагающих данное вещество. Места их расположения определяются координатными осями, направленными вдоль ребер ячейки. В качестве примера на рис 3.4 приведена одна из элементарных ячеек решетки, представленной на рис. 3.3.

При рассмотрении всего круга кристаллических веществ становится очевидным, что размеры ребер и углы между ними могут быть бесконечно разнообразными. Атомный состав также может меняться в очень широких пределах. Однако экспериментальное изучение пространственного расположения узлов решетки показало, что число принципиально различных типов решеток ограничено. Двумерные решетки могут строиться с пространственным расположением узлов в виде следующих сеток: квадратной, прямоугольной, центрированно-прямоугольной, в форме параллелограмма или шестиугольника; последнюю можно альтернативным образом описать на основе ромбической ячейки с углами 60° (рис. 3.5)1.

Как было установлено французским кристаллографом Огюстом Браве (1811-1863), число трехмерных пространственных решеток ограничивается лишь 14 основными типами. На рис. 3 6 показано по одной элементарной ячейке для каждой из 14 таких решеток Браве. Любую элементарную ячейку можно рассматривать как кирпичик особой формы. Его можно уложить вместе с другими кирпичиками, относящимися к тому же типу (и имеющими те же размеры), таким образом, что образуется бесконечная пространственная постройка без каких-либо зазоров между отдельными кирпичиками. В любом конкретном минерале кирпичики (элементарные ячейки) можно считать идентичными, хотя на самом деле у них имеются незначительные различия, описанные в разд. 4.4.4.

/

Рис. 3.4 Одна из элементарных ячеек, показанных на рис 3.3 (хлу = 76°, a = 30 мм, b = 20 мм) Звезды Южного Креста характеризуются следующим образом

 

Координаты в мм

Координаты в единицах измерения а и 6

а

24, 18

0,8, 0,9

в

0,4

0,0; 0,2

7

4,5, 0,8

0,15, 0,4

д

О, 16

0,0, 0,8

£

28,5, 16,8

0,95, 0,84

Различные минеральные виды имеют элементарные ячейки разных типов, размеров и углов, если углы между ребрами не равны 90 или 120°.

Решетки Браве делятся на три группы (см. рис. 3.6):

1. Примитивные решетки P, в которых элементарная ячейка имеет узел решетки только в каждой своей вершине. Существует семь Р-решеток.

2. Объемноцентрированные решетки I (от немецкого слова mnenzentrierte), в которых узел решетки помимо того располагается в центре ячейки.

3. Гранецентрированные решетки с узлами в центрах всех граней (^-решетки) или в центрах одной пары граней (в разных случаях они называются по-разному: С — базоцентрирован-ные, А и В — бокоцентрированные).

Существование в кристаллах только 14 типов решеток подтверждается опытным путем. Рисунок 3.7 позволяет проверить наличие дополнительных решеток в тетрагональной сингонии. Из него следует, что возможные решетки либо уже входят в число 14 решеток Браве, либо не образуют пространственного расположения узлов, при-

Рис. 3.6 14 решеток Браве.

Рис. 3.7 Проверка возможности существования в тетрагональной системе дополнительных решеток.

сущего, согласно данному выше определению, истинной решетке.

Для описания кристаллической структуры требуется, чтобы ее решетка была определена в соответствии с имеющимися 14 типами, с дополнительным указанием размеров ребер и в необходимых случаях углов между ними.

Элементарная ячейка минерала, конечно, весьма невелика; если исходить из атомной шкалы размеров, то длины ребер ячейки составляют 0,3-0,7 HM. Посмотрим теперь, какое влияние эти крошечные ячейки оказывают на внешний облик кристаллов, который мы можем видеть и осязать.

3.1.3 Элементы внешней симметрии

Когда мы берем в руки хорошо образованный кристалл, то видим, что он обладает определенной симметрией. Для ее описания используются при веденные ниже элементы симметрии.

1. Поворотная ось. Если выбрана какая-либо ось, проходящая через объект, и в ходе его полного поворота вокруг этой оси одинаковое расположение элементов объекта наблюдается более чем один раз, то такой объект имеет поворотную ось симметрии. В кристаллах эта ось может быть двойной (второго порядка, или просто ось симметрии), тройной (третьего порядка), четверной (четвертого порядка) или шестерной (шестого порядка) осью симметрии в зависимости от того, сколько раз одна и та же картина повторяется за один полный поворот (рис. 3.8).

2. Плоскость симметрии (зеркальная плоскость). Если удается выбрать некоторую плоскость, проходящую через объект таким образом, что каждая его особенность по одну сторону плоскости имеет полностью эквивалентную особенность по ее другую сторону в зеркальном изображении, то она представляет собой плоскость симметрии (рис. 3.9).

3. Центр симметрии (см. также разд. 6.4.2). Когда каждый элемент на одной стороне объекта можно соединить проходящей через его центр воображаемой прямой на таком же расстоянии от него с аналогичным элементом на другой стороне, то этот объект имеет центр симметрии. Наличие центра симметрии можно проверить на модели кристалла следующим образом. Если положить модель на плоскость, то каждому пространственному (внешнему) углу, соприкасающемуся с плоскостью, должен соответствовать такой же угол, находящийся на противоположной (верхней) стороне в обратной позиции (рис. 3.10).

4. Ось инверсионных поворотов (инверсионная ось). Этот элемент несколько менее очевиден, чем предыдущие. Его сущность можно описать, если представить себе случай, когда в результате поворота с последующей инверсией через центр точка попадает в новое положение, но при повторении этого приема она возвращается в исходное положение (рис. 3.11). Инверсионные оси бывают первого порядка, двойные (инверсионная ось второго порядка), третьего, четвертого или шестого порядка и обозначаются 1,2,3,4,5,6 соответственно. Можно показать, что инверсионная ось проявляется как сочетание других, уже упомянутых элементов симметрии. Однако этот элемент является удобным дополнением к другим при различных построениях, показанных на рис. 3.37. Отметим, в частности, что 1 эквивалентно центру симметрии, а 2 — зеркальной плоскости m.

Для иллюстрации элементов симметрии на рис. 3.12 показаны те из них, которые присутствуют в основных семи типах элементарных ячеек примитивных решеток Браве. Читатель мог бы сам рассмотреть эти семь типов, используя деревянные или картонные модели соответствующей

Рис. 3.10 Кристалл триклинной сингонии, обладающий только центром симметрии (соответствует 1).

Рис. 3.8 Оси симметрии.

Ось 2 Ось 4

Рис. 3.11 Инверсионные оси

формы. Ниже будет показано, что решетки, не относящиеся к примитивным (P), имеют внешнюю симметрию, соответствующую той или иной симметрии решеток P, т.е. имеется только семь различных групп симметрии.

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:5010 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:8202 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:5018 Грунты и основания гидротехнических сооружений

Еще материалы

Классификация текущего ремонта и сроки е…

Текущий ремонт предусматривает своевременное и систематическое проведение ремонтных работ по предупреждению преждевременного износа отдельных частей здания и его инженерного оборудования, а также работ по устранению мелких, повреждений и неисправностей. До истечения...

13-02-2010 Просмотров:26436 Эксплуатация жилых зданий

II.9 Обыкновенный город

II.9 Обыкновенный город (впервые: Митин И.И. Обыкновенный город у северного экстремума Онежского озера. Медвежьегорск. // География. Еженедельная газета Изд. дома «Первое сентября». 2003. №34. С. 19-24).     - Однако я построил в...

03-03-2011 Просмотров:4099 Комплексные географические характеристики

Сканерная съемка.

Лазерный сканер – прибор, предназначенный для автоматического определения пространственных координат множества точек, расположенных на поверхности объекта съемки. Сканер излучает лазерный луч, который, отразившись от поверхности объекта, возвращается к прибору. По времени...

13-08-2010 Просмотров:9594 Инженерная геодезия. Часть 2.