Menu

Баланс ионных зарядов.

Правила Полита. Схему действия электростатических сил, связывающих ионы в ионные кристаллы, в обобщенном виде описывают следующие эмпирические правила, сформулированные американским химиком Лайнусом Полингом.

1. Если общий заряд катиона разделить на число непосредственно окружающих его анионов (т. е. на его координационное число), то получается величина заряда, которую вносит катион для компенсации заряда каждого отдельного аниона.

2. Доля заряда, полученная анионом от соседних катионов, должна равняться (или приблизительно равняться) его валентности, т. е. заряды каждого иона в структуре должны быть уравновешены зарядами их непосредственных соседей или по крайней мере находящихся от него на близком расстоянии.

3. Наличие общих ребер (и особенно общих граней) между координационными полиэдрами уменьшает устойчивость структуры. Это происходит потому, что такое пространственное расположение полиэдров сближает их центральные катионы и тем самым приводит к возрастанию сил электрического отталкивания.

4. В кристаллах, содержащих различные катионы, имеющие к тому же высокую валентность при низком координационном числе, не проявляется тенденция к обобществлению элементов полиэдров, так как силы отталкивания между такими энергоемкими ионами очень велики.

5. Число существенно различающихся компонентов, составляющих кристаллическую структуру, стремится быть небольшим (принцип Пар-симони).

1.5.3 Ковалентная связь

Ковалентная связь образуется в тех случаях, когда у двух атомов, которые могут принадлежать и различным элементам, обобществляется пара электронов, причем каждый атом предоставляет в эту пару по одному электрону. Например, в молекулах HCl и Cl2 такая связь может быть выражена следующим образом:

Число образуемых атомом ковалентных связей зависит от числа электронов, которое требуется привнести на его внешнюю оболочку, чтобы получить устойчивую конфигурацию следующего за ним в периодической системе инертного газа. Это число составляет 8 — n, где n — число электронов на самой дальней квантовой оболочке.

Природу ковалентной связи легче всего объяснить на примере образования молекулы водорода. Представим себе два атома водорода, удаленных на такое расстояние друг от друга, которое не позволяет им взаимодействовать. Тогда каж-

Рис. 1.7 Энергия связи в молекуле водорода, рассчитанная путем постепенных уточнений (см. текст) [2, р. 116].

дый из атомов будет обладать энергией, равной -13,60 эВ. Теперь будем мысленно сближать эти атомы таким образом, что на электрон каждого из них начнет воздействовать ядро другого. С помощью методов волновой механики можно рассчитать изменение энергии в результате их взаимодействия в зависимости от расстояния между ними. Расчет учитывает притяжение ядра А заряженным облаком В и обратный эффект, а также силы отталкивания, возникающие между двумя ядрами и двумя заряженными облаками. На кривой, показывающей зависимость величины энергии от расстояния между атомами, имеется минимум (рис. 1.7, кривая а), где притяжение превышает отталкивание настолько, что хотя связь и возникает, она обладает гораздо меньшей энергией, чем известная энергия связи молекулы Н2.

Если затем два электрона окажутся в состоянии, когда их невозможно отличить друг от друга (так что при достаточном сближении любой из них может вращаться вокруг любого ядра), то приходится определять новую комбинированную волновую функцию. При этом мы будем иметь минимальную энергию (рис. 1.7, кривая 5), величина которой гораздо ближе к измеренной энергии связи. Еще точнее получится результат, если внести поправку, учитывающую экранирование одного ядра другим таким образом, что электронные орбитали сжимаются до меньшего объема (рис. 1.7, кривая б). Далее можно принять во внимание поляризацию (т. е. деформацию двух заряженных облаков). На следующей стадии необходимо учитывать возможность того, что два электрона могут в течение некоторого времени находиться вблизи одного и того же ядра, т. е. связь может в какой-то степени походить на ионную. Такое явление определяется как «резонанс» между ковалентным и ионным типами связи. В конце концов, путем подобного постепенного уточнения удалось получить значение энергии связи, равное 4,7467 эВ, сравнимое с экспериментально установленным значением 4,7466 ± 0,0007 эВ (рис. 1.7, кривая г).

Такой анализ относится к теории валентных связей и представляет собой один из двух математических подходов к рассматриваемой проблеме; другим подходом является «теория молекулярных орбиталей» (см. разд. 1.7). Он удовлетворительно объясняет, почему спаривание электронов, принадлежащих двум атомам, приводит к образованию химической связи, и может быть распространен на атомы с более сложным строением, чем водород.

В кристаллах при образовании ковалентных связей на внешних электронных орбиталях завершается спаривание атомов, которые в свободном состоянии имеют неспаренные электроны. Данные табл. 1.1 показывают, как, основываясь на сказанном выше, можно объяснить валентности первых десяти элементов.

Однако сразу возникает вопрос: каким образом углерод, имеющий два неспаренных электрона, соединяется либо с двумя атомами кислорода при образовании CO2, либо с четырьмя соседними атомами углерода в структуре алмаза (рис. 1.8)? Ответ заключается в таком понятии, как гибридизация орбиталей. Проблема опять-таки решается математически с помощью поло-

Рис. 1.8 Структура алмаза с тетраэдрической координацией атомов углерода. Тонкой линией показана одна тетраэдрическая группа.

жений волновой механики. Для данного случая Полинг выдвинул идею о том, что за счет возбуждения, требующего около 400 кДж на г-моль, один из s-электронов продвигается к свободной р-орбитали (табл. 1.1), предоставляя таким образом возможность четырем неспаренным электронам образовывать связи. Так, закономерное пространственное расположение атомов в алмазе и другие данные показывают, что эти четыре связи не совпадают с тремя p-связями на рх-, ру- и рг-орбиталях направленного характера, располагающихся под углом 90° друг к другу (а также с какой-нибудь иной связью с s-орбиталью), а представляют собой четыре эквивалентные связи, расположенные под равными углами (109°28') друг к другу, т. е. по направлению к вершинам тетраэдра, в центре которого находится атом (рис. 1.8). Коротко говоря, различия между s- и р-орбиталями исчезают и в результате образуется одинаковый тип связи. Такой процесс называется гибридизацией электронных орбиталей.

В случае углерода в образовании связи участвуют одна орбиталь s и три орбитали р и поэтому она называется я^-гибридной связью. Однако возможны и другие типы гибридизации. Их интересная особенность, выявляемая при математическом анализе, состоит в том, что они обладают определенной геометрической формой, а именно: заряженные электронные облака расходятся лучами от центрального атома под определенными углами друг к другу. На рис. 1.9 в качестве примера приведены точно рассчитанные изолинии плотности вероятности для одной из четырех sp3-гибридных орбиталей в углероде, а полная картина четырех связей схематически показана на рис. 1.10. Формы некоторых других важных гибридных связей даны в табл. 1.5.

Характерными особенностями ковалентных связей являются строгая направленность их свойств, а также необходимость компенсации валентностей электронов между непосредственными соседями. Первая из этих особенностей представляет собой полную противоположность металлической связи. Вторая содержит в себе важное отличие от ионной связи, где возможна определенная свобода при уравновешивании зарядов, об-

Рис. 1.9 Вид волновой функции ф для одной орбитали тетраэдров углерода с дУ-гибридной связью. Форма орбитали выявляется при вращении рисунка вокруг линии его основания. Такой тип диаграммы является основой для изображения образующих связи орбиталей в виде лепестков, исходящих из атомного ядра (по [2, р 199]) Каждая единица радиуса равна 0,0529 HM.

Радиус а0

Таблица 1.5 Формы некоторых гибридных связей

Гибридная

Геометрическая

Координационное

связь

форма

число*

sp

Линейная

2

sp3

Тетраэдрическая

4

dsp2

Квадратная

4

j2 3

d sp

Октаэдрическая

6

: Число атомов, связанных с центральным атомом.

Рис. 1.10 Изображение тетраэдрического заряженного облака 5р3-гибридных орбиталей углерода, составленного из четырех ячеек такого типа, как показано на рис. 1.9.

условленная тем, что они не аккумулируются в структуре на больших расстояниях.

Последние материалы

Заключение (Грунты)

При построении курса учитывалась необходимость его использования для различных гидротехнических специальностей и специализаций. В качестве основной части для студентов всех гидротехнических специальностей следует считать обязательным прочтение гл. 1—7. В гл. 8...

25-08-2013 Просмотров:4223 Грунты и основания гидротехнических сооружений

Представления о решении задач нелинейной механики грунтов

На современном этапе развития нелинейного направления механики грунтов оформились два основных подхода к решению практических задач расчета грунтовых оснований и сооружений: нелинейно-упругий и упругопластический (А. К. Бугров, С. С. Вялов...

25-08-2013 Просмотров:7422 Грунты и основания гидротехнических сооружений

Прочность грунтов при сложном напряженном состоянии

Для сред и материалов, обладающих сплошностью, предложено много различных условий прочности. Для оценки прочности грунтов наиболее широкое распространение получило условие Мора—Кулона (2.38), не содержащее промежуточного главного напряжения а2 и тем...

25-08-2013 Просмотров:4412 Грунты и основания гидротехнических сооружений

Еще материалы

Установка и поверка приборов, мероприяти…

При выборе способов и мест установки приборов необходимо руководствоваться следующими положениями: число приборов, особенно, механического принципа действия, должно быть оптимальным из условия, с одной стороны, получения достаточного числа точек измерений, с...

19-03-2013 Просмотров:4089 Обследование и испытание сооружений

Приближенный метод динамического расчета…

Целью динамического расчета моноопоры является определение недопустимых на практике режимов эксплуатации, резонансных по отношению к волновой нагрузке. Основной задачей при этом становится нахождение первой собственной частоты колебаний системы моноопора -...

12-01-2011 Просмотров:5468 Морские буровые моноопорные основания

Види деформації й причини їхнього виникн…

Внаслідок конструктивних особливостей, природних умов і діяльності людини споруди в цілому і їхні окремі елементи випробовують різного виду деформації. У загальному випадку під терміном деформація розуміють змінення форми об'єкта спостережень. У...

30-05-2011 Просмотров:6051 Інженерна геодезія